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Abstract. Surrogate modeling in engineering design uses Computer-Aided Design (CAD)
to create input features. To this end, CAD models are parameterized and have traditionally
assisted design changes, automation, and standardization. However, this process leads to low
flexibility, limited design space exploration, a high-dimensional design space, and ultimately
extended design cycles. This paper builds on an existing methodology of correlation-based
feature extraction in CAD to prevent dimensionality excess and improve the flexibility of
surrogate models. We extend the ’sleeping parameters’ concept from extraction to engineered
features and position it in the overall machine modeling learning process. To count for
efficacy validation as part of the process of training a prediction model, several correlation
matrices are suggested to rank and select these new features, which complete the feature
engineering loop. Utilizing a new case study on Thin-Walled Beams (TWBs) crashworthiness,
we showcase how to construct the medial axis of a beam cross-section and extract numerous
features in several categories. The results show meaningful relationships between the sleeping
parameters and their resulting crashworthiness outputs. The implications of the findings
suggest the possibility of achieving better predictions with fewer parameters and reduced
dependency on CAD parameterization, potentially leading to accelerated design iterations in
the development of TWBs.

Keywords: Surrogate modeling, Feature engineering, Data-driven design, CAD/CAE, Thin-
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1 INTRODUCTION

Building predictive surrogate models for assessing the performance of a design concept is a standard practice
in engineering design. Traditional Computer-Aided Design (CAD) parameterization, while instrumental in
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design changes, automation, and standardization, presents inherent challenges when faced with drastic design
changes. A simple geometric shape can necessities many parameters for definition, leading to high dimensional
[27] or unnecessarily complex prediction models further down in the process. With the increase in the problem
size and geometrical intricacies, prediction models become cumbersome or potentially lose their accuracy.
As a result, it will be incredibly expensive to explore design space with more complex systems [7]. On the
other hand, with another AI boom in the industry, more data availability, and increased complexity of modern
products, information overload can easily overwhelm any design process [4, 17] and escalate the problem.

CAD features have historically played a pivotal role in building meta/surrogate models in engineering design
[39, 43], and parameterization has been associated with CAD models from the beginning. Another issue is
that conventional CAD parameterization tends to be deterministic and might not easily accommodate the
variability and uncertainty inherent in real-world applications, which is crucial for robust prediction models
[20]. For example, in the case of the introduction of a new design change (such as the removal or addition of
a sketch dimension such as the one depicted in Figure 1), the already trained surrogate model can easily be
useless or require maintenance. Because the dimensions that were being utilized as a feature in the Machine
Learning (ML) training, such as a and b, might not be available anymore in the revised geometry or replaced
by another dimension, such as e, as a result of the change in the shape.

Figure 1: CAD model parameterization reduces the flexibility of surrogate models to design change.

Moreover, CAD parameters are frequently derived based on design intent [19], meaning designers deal with
them early in the design process. Yet, the prediction models are often brought into the picture late during
design iterations. So naturally, designers can unintentionally make decisions that include irrelevant or redundant
features that are not revealed as an issue until the later phases of product development [29]. In design space
exploration, this increases the computational demands and can also obscure meaningful relationships (between
input and output), hindering the model’s generalizability and performance. All these problems echo a pressing
need for refined and purpose-driven parameterization techniques or alternative solutions that align more closely
with the requirements of predictive surrogate models.

As a solution to reduce the complexity of managing CAD parameters in complex shapes and making pre-
dictive surrogate models less dependent on them, the sleeping parameters convention has been introduced
recently by the authors [27]. Sleeping parameters are defined in contrast to conventional CAD parameter-
ization as engineered features that are coupled to the geometry of the design but are independent of the
geometry creation process. The term ’sleeping’ emphasizes that these features, while not immediately visible
or conventional, have a potential utility that can be awakened through appropriate processes. Unlike ’latent’
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or ’hidden’ in data science, this name suggests an inherent obscurity or underlying useful nature. Sleeping
parameters can be constructed, extracted, selected, and then processed even if the geometry undergoes drastic
changes. This process justifies borrowing and using the feature engineering terminology from the data science
field. As illustrated in Figure 2, the machine learning process starts with raw data and continues in an iterative
data preparation, which goes through two processes for pre-processing and feature engineering before the start
of learning the data and ending with derived model [8].

Figure 2: Feature engineering process nested in a machine learning application loop.

As illustrated in the figure, the first iterative process (also known as data preparation) includes data
pre-processing and may or may not include feature engineering according to the definition (depending on
the acquired data quality). Thus, feature engineering can be considered a specialized part of the broader
data preparation process and encompasses a wider range of activities, including creating, transforming, and
optimizing features for use in machine learning models.

Our prior work introduced a correlation-based feature extraction method on an airbag design case [27].
However, any method’s true potential and versatility are revealed when challenged in diverse environments
[18]. By extending methodology from one context to another (crashworthiness case here), we hope to create
a more rigorous foundation for the method and contribute to its generalizability. This paper extends the
sleeping parameters concepts from only an extraction to cover the whole feature engineering loop. This is
done by introducing more varied ways of extracting features from the constructed data from the medial axis.
Additionally, more correlation metrics are suggested to be used for evaluating the extracted features. Borrowing
the data science terminology for the feature engineering process that includes the construction, extraction,
and selection [46], it has shown how we can construct the medial axis of different variants of TWBs, extract
meaningful features from this data, and evaluate and select the best ones among them for further use in the
machine learning process.

In the realm of computational modeling and design, the accurate prediction of system behaviors and
outcomes is of paramount importance. Selecting the right features for analysis can make all the difference to
achieve accuracy. The aim is to make the end prediction model (in the surrogate modeling process) more flexible
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by crafting (or engineering) high-quality features that represent the form but are acquired independently of it.
Unlike conventional feature selection techniques that may overlook certain intrinsic parameters with significant
predictive power, this technique tries to introduce a new way of looking at the process of selecting features for
surrogate modeling in engineering design. Thus, the research question for this paper will be how to extract
features from Computer-Aided Design (CAD) and, in particular, geometrical descriptions of the concepts to
enhance prediction accuracy.

To answer this question, the previously introduced medial axis concept will be employed over a new case. We
aim to validate, refine, and potentially expand our original findings by applying a previously established method
to a new scenario. The remainder of the paper is organized as follows. The next section lays down a background
and literature review of features and data mining in engineering design. The third chapter introduces Thin-
Walled Beams (TWB) as the case study in this paper and explains the finite element simulations performed
to attain the final outputs. Next, seven features extracted from the medial axis process are presented and
ranked based on different correlation metrics. Finally, we discuss the results and suggest a categorization of
the features together with some suggestions for future studies.

2 BACKGROUND

2.1 Features in Design Science vs. Features in Data Science

Although data mining and feature engineering are not new topics, unlike data science, the literature on this
topic in design society is scattered and has not gained much attention. Partially, this can be the result of the
semantic confusion around the word features.

Features in computer-aided design and features in data science are completely referred to as different things.
In the data science and machine learning community, a feature is defined as the numerical encapsulation of
the raw data [49], serving as characteristics or property of the entities being analyzed [12]. Features serve as
structures in a dataset and are meaningful within a scientific or engineering context [24]. Data scientists use
algorithms to discover patterns and relationships within mined data to identify patterns, make predictions, or
derive insights. Features in data science can be represented as columns in an Excel spreadsheet or as attributes
within a dataset in various formats, such as CSV files, SQL databases, or data frames. These features are
crucial for training machine learning models as they provide the necessary information to predict or classify
outcomes based on the learned patterns from the data.

On the other hand, there is the notion of CAD features or form features in the design literature that refer
to the fundamental building blocks of a design’s form [35]. These features are essential geometric or functional
components of a product, such as holes, slots, bosses, and other standardized shapes that can be combined
to create the overall geometry of a product. In addition to the form, features are also defined as entities
describing the function [13], encapsulating specific engineering significance used to represent attributes and
relationships within a part or assembly. Features can also refer to the connection between two parts [23], also
known as assembly features like mating and constraints, as well as parametric controllers like dimensions and
angles that designers use as relationships that exist between different parts within an assembly. CAD features
in parametric modeling allow for easier modifications and optimization of designs, where the relationships
among features can be defined to update the entire design when changes are made automatically. Moreover,
the terms kinematic features, manufacturing features, and functional features are also introduced in design
literature [9], which are self-explanatory. User-defined features (UDF) enable users to build their own features
in CAD [42, 5], allowing for greater flexibility and customization in the design process. These features can be
tailored to specific engineering requirements or to optimize the manufacturing process, thereby enhancing the
functionality and efficiency of the designed products. The definitions of features and the distinctions between
Design Science and Data Science are succinctly summarized in Table 1. This table highlights how each field
approaches the concept of ’features’ from its unique perspective.
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Data Science Design Science

Numerical encapsulation of the raw data [49] Form features are fundamental building blocks of
a design’s form [35]

Characteristics or property of the entities being
analyzed [12]

Entity describing both the form and function of a
design [13]

Structures in a dataset and meaningful in context
[24]

A part feature a shape with specific geometric and
topological characteristics and similarly, assembly
feature is as a connection between two parts [23]

Table 1: Definitions for features in data science and design science literature

An overlap between data engineering in product design and process is the knowledge discovery field that
enables understanding a large body of textual datasets. Initially, this included building cyber agents such as web
tracers and web organizers to extract needed information for product development [11]. Such textual features
in engineering studies aim to enhance knowledge reuse by introducing computation knowledge extraction in
text format from design documents, testing reports, life cycle assessments, customer reviews, sales returns,
and so on [28, 31]. Semantic literature constructs a tag similarity measure to emulate how humans recall
tags from memory. This line of research aims to design information retrieval by utilizing a network of similar
semantics [37]. Features that are being mined are structured information from written historical records [34].
Another semantics branch is to analyze sentiments for mining customer requirements in the conceptual design
process [40, 44]. Features identified here are the emotional tone (positive, negative, neutral) expressed within
the text. Moreover, there are other kinds of mining-related topics concerning product design, such as reasoning
about designs through frequent pattern mining, product design using association rule mining, and text features
for mining design rationale, which are all along the same lines. Text mining research in product development
continues until today [26, 47] with advancements in large language models, but since it goes beyond the scope
of this paper, we refer readers to a recent review paper [38] for a comprehensive review on the topic.

2.2 Data Mining in Engineering

Regardless of any possible input data type in machine learning models - scaler or binary, vector or time
series, and matrices or images [2] - the data is translated to Real (R) numbers to be used in mathematical
computation. Because of their rich data types, simulations are a natural choice for data mining in engineering.
In continuous simulations (e.x. Finite Elements), node and shell section information stored in a meshed finite
element model can yield input data for analyzing a part’s performance after a geometric change [21]. Zhao et
al. present a framework for data preparation on crash simulation data for studying occupant restraint systems
parameters on crashworthiness properties based on attribute importance and decision trees [48]. This was
reported to reduce the size of the data sets and delete irrelevant features from the data sets, especially in full
vehicle model type geometries that have more than hundreds of parameters.

On the other hand, discrete event simulation models are used as cost projectors for estimations in life cycle
assessments. Data mining on the history and cost-based features are used in the aerospace industry as tools to
characterize cost drivers such as over-performing repair activities [25]. Such clustering-based simulation mining
methods instantiate a vast design space offline. Given new design variants, most similar designs are looked
up with a similarity index, and from the simulation results of its ’design neighbors’, a behavior valuation for a
given simulation is stated without a Finite Element Analysis (FEA) [6]. Generally, simulation data is exploited
to learn heuristic connections between the design space and the simulation space, but the effectiveness of this
method depends on how well your simulations represent real-world behavior. Bad simulations can lead to bad
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heuristics. More recently, simulation data mining that uses mesh models has been shown to be effective in
assisting designers in tracking design change [36].

Graening and Sendhoff suggest several methods for shape mining to enable data mining techniques in
engineering design to integrate data across design teams dealing with different simulations, as they argue
these techniques are restricted to single design processes and individual design teams [14]. Data mining for
such research is more of knowledge discovery by looking at associations (finding dependencies in an analyzed
data set), clustering (creating clusters of objects in a way to ensure the highest possible similarity between group
members), classification/regression (creating a dependency model between independent variables describing
given objects), or description (concise summarizing of analyzed data) [30].

3 STUDIED CASE

Automakers prioritize efforts to reduce the overall weight of their vehicles as heavier automobiles have greater
inertia and rolling resistance, contributing to different issues such as higher fuel consumption [22]. The main
structure of a car, without mounting the motor, seats, electronics, etc., is known as the Body-In-White (BIW).
This is where the main energy-absorbing structures are located. The BIW accounts for 30%-40% of a car’s
total weight. Therefore, the need to develop a low-weight frame with high Specific Energy Absorbing (SEA)
capacity is bigger than ever. The BIW of an automobile consists of multiple TWBs, and each one of these
beams is designed to absorb the highest energy (in the moment of crash) and deform with the lowest Peak
Crushing Force (PCF). The maximum force needs to be lower to minimize the amount of acceleration that
affects the passengers [3]. This makes the automobile frame a complex system of different TWBs that must
work together to fulfill the function of stiffness, crashworthiness, and low weight.

Within the automotive industry, the analysis of structural components like TWBs is crucial, given their
role in vehicle safety and performance. Many automakers use a repetitive design process to evaluate the
performance of these designed beams. As the final design needs to be integrated with other systems, these
design iterations can take up to many years [27]. Therefore, being able to predict the performance of these
beams is of utmost importance. To show such ability in this paper, we use cross-section geometries for the
existing beams in the literature [50]. Figure 3 shows 46 geometries that are a simplified representation of
a Toyota RAV4’s frame [51]. Using these images of the geometries, a similar scaled curve is extracted in
SolidWorks for each shown cross-section. The cross-sections were systematically cataloged in STEP files using
an image to CAD capabilities of SolidWorks software.

Later, to be able to show the predictability, simulation results of the SEA and PCF of each one of these tubes
that are acquired [15]. A dynamic explicit simulation with semi-automatic mass scaling is used, and tests are
carried out under lateral load. The STEP files are imported as a sketch to the FEA software ABAQUS and then
extruded as shell elements; the process is visualized in Figure 4 (from geometry definition to discretization).
A filter is used to stop the simulation at the correct time; this filter monitors the speed of the analytical wall
and stops the simulation when the wall velocity reaches 0. It is worth mentioning that the FEA simulations
in this paper are performed for only one thickness. However, testing for three different thicknesses (1, 2, and
3 mm) is carried out in a separate study, which shows that such superiority is not limited to the specific scale
of the geometry.

Several output variables are requested from the simulation every 5E-5 seconds. The reaction force is the
first variable requested, measured at every node in the tube’s boundary condition. The other two variables are
the velocity of the wall displacement. Since the wall touches the tube at the beginning of the simulation, the
measured amount of wall displacement is the same as the tube displacement. In this way, all cross-sections
are simulated to read out their crashworthiness characteristics, i.e., PCF and SEA. The verification of the
FEA model was done with the results of published literature [1]. Many of the geometries that are simulated
have spot welds between the different plates. To simplify the FEA process, they are considered rigid nodes as
suggested in the literature [45]. Since the performance of the welds is not of interest in this study, this choice
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Figure 3: An example of frames in BIW with many different TWBs geometries.

Figure 4: The finite element process of one example cross-section.

does not affect the final conclusions.

4 CONSTRUCTING FEATURES

This paper suggests using an alternative geometric representation of a shape as a means for data mining
before starting feature engineering in the process of training machine learning models. The medial axis or
the ’skeleton’ of a shape is the set of all points inside the shape that have an equal distance to two or more
points on the shape’s boundary. The medial axis of a simple polygon is closely related to the Voronoi diagram
constructed from its edges [27]. The shape of the medial axis is unique for each polygon and is reversible,
so the medial axis can be used to restore a shape based on its medial axis. In general, one can consider the
medial axis of a shape as an alternative geometric representation of the shape but in a lower dimension. This

Computer-Aided Design & Applications, 22(4), 2025, 536-554
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


543

is because the medial axis of a 3d shape is a 2d surface, and the medial axis of a 2d shape reduces down to
a curve. The shape’s convex or concaveness is not important for our use case aim because it just determines
the direction and position of the medial axis. However, the shaper must be closed, and indeed, three of the
cross-sections that are not closed polygons (numbers 16, 32, and 35) are removed from our analyses.

There are many ways to construct a medial axis of shape. In this paper, we use the Rhino Grasshopper.
Rhino is a specialized 3D design software employed extensively in industrial design applications. Grasshopper
is a complementary plug-in to Rhino, which offers visual programming capabilities and can aid in the creation
of transparent design automation assets for designers [16]. The saved STEP files (from the previous section)
were imported into Rhino Grasshopper using the yellow part of the script shown in Figure 5. The figure shows
that after importing the geometry, the data goes through components to create a boundary surface, and then
the surface splits into several segments in another component depending on how many sections exist in the
geometry. The blue section in the figure reconstructs the medial axis of each section and then combines them
with a series of components for later analysis. This is shown with two output components in the figure: the
’Radius of circles’ and ’Medial axis’ segments.

Figure 5: The visual representation of the Rhino grasshopper code.

The steps for constructing the medial axis of a shape are as follows. First, the boundary is divided into
equally distanced points (the number can be adjusted with a slider component), and then a circle is grown
on each cell to create Voronoi cells. Here, every point in the circumference acts as a seed for these Voronoi
cells. When these cells reach each other (due to increasing the size of cells), they create the desired medial
axis. It is important to note that not all the edges of the Voronoi diagram belong to the medial axis, and the
constructed lines need to be pruned, which is done by trim components shown in Figure 5. Depending on the
pruning process, some noise will be introduced to the gathered data [41]. However, since the nature of the
use here is comparative, the introduced noise will not affect our conclusion. The assumption is if the gathered
(noisy) data is shown to be effective for the end purpose (prediction model), the healthier data can even show
more promising results and not worse. On the other hand, the hyperparameters for creating such a medial
axis were selected similarly for all construction; therefore, the noise should affect all geometries equally.

Four steps of creating a medial axis from dividing the curve from a STEP file to edge points for each
geometry, growing the seeds of Voronoi, and pruning are shown in Figure 6. From left to right, the seeds and
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small circles growing from them are shown in the first figure, and then the next two figures show how circles
behave when they start to grow more and reach each other. In the next figure, the blue line represents the
shape’s medial axis or skeleton, and the final figure shows the fully developed medial axis shown in the blue
lines. Here, all the gray-colored lines, which are radii of the circles that have developed the medial axis, need
to be pruned.

Figure 6: Voronoi process to get the medial axis of a cross-section.

5 EXTRACTING FEATURES

Construction of the medial axis from Vronoi diagrams of the shape’s boundary is an advantageous data mining
process that then needs to be continued further by extracting useful information according to the features
engineering process shown earlier. Medial axis construction not only gives back the skeleton of the shape
but also the radius of the circles (which resembles the fractal’s width), which contributes to different kinds
of information about geometry. These radiuses can reveal other useful information for the predictive task at
hand. Figure 7 illustrates the results of the applied process and the acquired medial (in blue line) axis and
radius of the circles (in gray lines) for three cross sections. The black curves correspond to the geometry’s
outer circumference. It can be argued that while the medial axis is coupled to the shapes’ intricate geometry,
the constructing radiuses are related to the regions of the shape and thus can hold regional-based information
for end prediction models.

Figure 7: Several geometries (3 out of 46) after the Voronoi operation.
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5.1 Region-Based Features

The region-based features are informative about those characteristics of the shape that are related to the area
and regions. The gray lines in Figure 7, which are the radius of the circles and cover the shape area, can be
used to extract two examples here by averaging and summing the length of all the gray lines in the shape, as
shown in Figure 8. The two features in the dataset are called Avg. circle radius and Width information. The
average circle radius acts as a measure to show how regular or symmetrical the shape is. Shapes with a more
consistent average circle radius tend to be more regular shapes. This can be important in classifying objects or
detecting anomalies in a dataset. The average circle radius is indirectly related to the shape’s overall size and
scale. While it doesn’t give the exact area, it provides a sense of whether shapes are predominantly large or
small compared to the other shapes in the dataset. If the size of the shapes matters for the prediction model,
this feature could be a useful input.

Figure 8: Extracting ’avg. circle radius’ and ’Width information’ features.

5.2 Fractal-Based Features

The medial axis-based features can play a vital role in more intricate geometries that allow for no parame-
terization or require enormous parameters to control every degree of freedom. The medial axis (blue curve)
shown in Figure 7 can be used to extract several features such as the length of the medial axis and number
of branch points as called in the dataset. Figure 9 shows the process of measuring these features. The length
of the medial axis can offer insight into the overall size and extent of the shape. Longer medial axes generally
correspond to larger, more elongated shapes. This information can be crucial in differentiating between shapes
of varying sizes and proportions. On the other hand, the number of branch points reflects the complexity of
the shape’s internal structure. Shapes with many branch points often exhibit intricate branching patterns or
protrusions.

5.3 Boundary-Based Features

Perimeter offers a basic size estimator. While it doesn’t directly capture intricate details, it provides a general
size reference for comparison between shapes. This can be valuable for a prediction model involving any kind
of size normalization or adjustment. In topology, ’handles’ refer to the number of holes in the shape. A higher
number of handles correlates with a more complex boundary, potentially indicating cavities or indentations.
This metric can be important for classification or feature analysis when surface complexity is significant. Since
it uses the edge curve of the original shape, as shown in Figure 10, it is placed among the boundary-based
features.

The list of features one can extract from an alternative representation of geometry, like the medial axis,
can be long and may vary based on the use case. Some features that show good quality for one use case
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Figure 9: Extracting ’Number of branch points’ and ’Medial axis length’ features.

Figure 10: Extracting ’Number of handles’ and ’perimeter’ features.

might not show the same importance for others. Here, we only give examples of different possible scenarios.
One other possible scenario in this case study is to use a mix of the above sources to extract a feature. For
example, the compactness ratio of a polygon shape is a well-known metric for 2d and 3d shapes and is an
intrinsic property of objects [32]. This is calculated as the ratio of a shape’s area to its bounding circle’s area
(shown in Figure 10). For the same area, shapes that deviate significantly from being circular will have lower
compactness ratios. This feature can offer insights into how well a shape fills its space. Some other features
can help differentiate shapes with similar areas but drastically different contours.

5.4 Other Features

The list of features one can extract from an alternative representation of geometry, like the medial axis, can
be long and may vary based on the use case. Some features that show good quality for one use case might not
show the same importance for others. Here, we only give examples of different possible scenarios. One other
possible scenario in this case study is to use a mix of the above sources to extract a feature. For example,
the compactness ratio of a polygon shape is a well-known metric for 2d and 3d shapes and is an intrinsic
property of objects [32]. This is calculated as the ratio of the area of a shape to the area of its bounding circle
(shown in Figure 11). For the same area, shapes that deviate significantly from being circular will have lower
compactness ratios. This feature can offer insights into how well a shape fills its space. Some other features
can help differentiate shapes with similar areas but drastically different contours.
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Figure 11: Extracting ’compactness ratio’ as a feature.

After analyzing all 46 cross-sections that are introduced in Figure 3 with the shown procedures. Finally, all
extracted features are recorded in a spreadsheet to be further analyzed in the feature selection process. This
database is shown partially in Table 2. It is worth mentioning that the order of magnitude and unit are of
no interest due to the nature of the analysis being performed, and if necessary, this can be done later by a
normalizing method as a subtask under the matching learning process.

Num Length of
Medial
Axis

Width In-
formation

Number
of

Handles

Branching
Points

Shape
Perimeter

Avg Circle
Radius

Compactness SEA
(KJ/Kg)

PCF (N)

1 3104.1 26054.3 15 96 1830.8 29.6 0.0268 15.16 92033

2 3706.2 23187.1 13 106 2223.7 26.3 0.0211 12.52 108135

3 3446.5 33735.4 14 83 1922.9 38.3 0.0314 14.51 94598

... ... ... ... ... ... ... ... ... ...

41 3451.4 30293.5 11 83 2209.1 34.4 0.0282 13.11 106251

42 1746.4 25227.4 7 30 1316.8 57.3 0.0527 21.65 64662

43 1614.5 25573.9 6 29 1213.7 58.1 0.0553 22.87 61466

44 1502.3 17552.7 4 29 1221.6 39.9 0.0433 23.26 59824

45 1860.9 8991.6 11 62 1671.4 20.4 0.0155 17.03 80601

46 3279.2 41802.3 13 70 1826.2 47.5 0.0386 14.47 95184

Table 2: Dataset with extracted features and the two CAE outputs as target values.

6 SELECTING THE EXTRACTED FEATURES

After the feature extraction process (Figure 2), it is crucial to employ feature selection techniques to determine
which one of the extracted features has the strongest predictive power. Correlation measures the strength
and direction of a linear relationship between two variables and thus is a suitable metric to measure the
quality of extracted features in the context of prediction modeling [27]. Unlike previous studies, we propose
to use different correlation techniques to study the quality of the extracted features to account for both linear
relations in the data as well as nonlinear relations. A high absolute correlation coefficient (close to 1 or -1)
indicates a strong relationship, suggesting that the feature significantly impacts the target variable and can be
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a good predictor. Table 3 shows three studied correlations for all extracted features. For example, the Pearson
correlation between the Length of Medial Axis and SEA is -0.91, and between the same feature and PCF is
0.94, which shows this feature is highly correlating with both defined target values.

Linear regression score Pearson correlation Spearman correlation
SEA PCF SEA PCF SEA PCF

Length of Medial Axis 0.83 0.89 -0.91 0.94 -0.93 0.92

Width Information 0.26 0.23 -0.50 0.48 -0.57 0.58

Num. of Handels 0.68 0.77 -0.82 0.88 -0.81 0.81

Branching Points 0.70 0.79 -0.83 0.89 -0.86 0.85

Shape Perimeter 0.87 0.98 -0.93 0.99 -0.99 0.98

Avg. Circle Radius 0.34 0.30 0.58 0.54 0.58 -0.58

Shape Compactness 0.57 0.52 0.75 0.72 0.74 -0.74

Table 3: Correlation between mined features and two FEA outputs.

In this table, a simple linear relationship derived from fitting a linear line to the data is used to describe
the complexity of the relation. This parameter can be extracted from the score of the linear regression model
in Keras [10]. This score mainly tells us how well a simple linear model explains the variability in one variable
based on changes in another variable.

Parametric Correlations are used when data is assumed to follow a normal distribution. For example,
the Pearson Correlation Coefficient is the most common measure that captures the strength and direction
of a linear relationship between two continuous variables. There are also nonparametric Correlations, such
as Spearman, which is rank-based and is used when data is not normally distributed or contains outliers.
Spearman Correlation (Spearman’s rho) measures the strength and direction of a monotonic relationship
between two variables (continuous or ordinal). A monotonic relationship means the variables consistently
increase or decrease together, but not necessarily at a constant rate [33].

Using three types of correlation - Linear Regression Score, Pearson Correlation, and Spearman Correlation -
provides a more comprehensive evaluation of the relationships between features and the target variable in your
data. Each of these metrics offers a unique perspective on the data, allowing for a more nuanced understanding
of how different features might influence the model’s predictions.

7 DISCUSSION

This paper demonstrates the value of utilizing feature engineering in CAD for surrogate modeling. To this end,
the medial axis, derived from Voronoi diagrams of a shape’s boundary, is used for constructing, extracting, and
selecting features. The medial axis provides a skeletal representation of the shape and can potentially hold
more valuable information for prediction tasks. One of these valuable features that was identified was the radii
of the contributing circles, which offer insights into regional variations and can be interpreted as fractal width
measurements. Other features identified were the number of handles, number of branching points, shape
perimeter, average circle radius, and shape compactness. These extracted features could be integrated with
machine learning models to develop robust predictive tools for various engineering applications.

Table 3 shows the length of the medial axis has a good correlation with the crashworthiness characteristics
of the geometry (calculated from finite elements as mentioned earlier). Specifically, an average correlation
of 0,8613 and 0,8104 for peak crushing force and specific energy absorption, respectively. This is highly
advantageous since such parameters that are hidden in CAD can represent the objective function and thus
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can be used as part of the selected features for further data analysis in predicting the outputs. This table
also reveals which features do not show good correlation and thus should be removed in the selection process
(average circle radius).

Developing thin-walled tubes is a resource-intensive process; thus, surrogate models are heavily used in
this domain to predict TWBs’ crashworthiness characteristics. The methodology shown in this paper for
feature engineering on CAD geometries can free surrogate models from parameterization and reduce their
dimensionality. More efficient surrogate models can accelerate the design loops. Considering that one FEA
simulation of a TWB takes, on average, 30 minutes while calculating the sleeping parameter only takes a few
seconds, shows how such feature engineering can be beneficial for accelerating the development process of
TWBs. Especially for more advanced models that take hours and days of simulation time over the development
process iteratively.

It should be noted that the number of features that need to be constructed in a feature engineering
process depends on the complexity of the response surface at hand. And it is not always for granted that
most extracted features will be of high quality. This puts the burden on the domain engineer to understand
the extracted features and suggest a way forward. However, to give an idea about what possibilities exist with
our methodology, we present a categorization based on the nature of the information that these features hold.
Also, to inspire designers for more possibilities, several other possible features that are not studied for this use
case are also added to Table 4.

Feature Type Examples Description

Boundary-based Perimeter, convex hull, radius of gyration, Euler number, pro-
file, bounding box parameters

Extracted directly from the
shape’s boundary

Region-based Area, mean intensity, Eccentricity (elongated or stretched)
variance, entropy, texture, Central moments, Hu moments,
or Zernike moments can capture shape properties, compact-
ness

Extracted from the interior
of the shape

Fractal-based Fractal dimension, Skeletonization Features (length, branches,
loop handles), eigenvalues and eigenvectors of the covariance
matrix of shape points, Tortuosity (Measuring the "wiggili-
ness" of the medial axis), Angles between Branches

Describes the self-similar
structure of the shape

Table 4: Categorization of features beyond traditional feature selection in CAD.

Boundary based features are valuable measures of the shape’s overall size or material usage. Among the
three types of features, boundary-based features are the most susceptible to minor imperfections or noise along
the boundary, so pre-processing steps should be noted to smooth the boundary or reduce the impact of noise.
As it can be inferred from the results in Table 4 for our use case, the correlation of perimeter is the best
among features. This means shape descriptors derived from boundary and medial axis data can potentially
aid in quality control, identifying deviations from the intended design and catching defects for other prediction
models in the industry.

Region based features hold information about local variations in thickness. A shape with a narrow geomet-
ric distribution suggests consistent thickness, while a wide distribution implies significant changes in curvature.
This can potentially correlate with areas susceptible to high stress. For example, in an optimization process
of an aircraft wing spar, it can be used for thickening areas along the medial axis where stress is highest, and
conversely, in areas experiencing lower stress, the thickness can be reduced to save weight without compro-
mising structural integrity. As another use case, maintaining consistent thickness is crucial for analyzing flow
paths within a fluidic system. By monitoring the average circle radius, engineers can ensure specific regions
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within the system are optimized to prevent turbulence and maintain uniform pressure. This consistency helps
in achieving efficient flow and system reliability.

Compactness is a unique feature that combines regional and boundary information. Table 3 shows it is
moderately important concerning correlating with the FEA output. However, the importance of such hybrid
features can only be revealed when studying if they correlate with the functional performance of engineered
components. Since compactness is defined as the ratio of area to its bounding box, it can exhibit useful
information when used in specific domains. For example, in aerodynamic analysis, the shapes with higher
compactness exhibit lower drag, making them more aerodynamically efficient, or in heat transfer analysis,
more compact shapes have a higher surface-area-to-volume ratio, which can mean faster heat dissipation.

Fractal-based features can hint at a structure’s strength, how well it can distribute stress, and its potential
deformation under a load. For instance, objects with a higher fractal dimension tend to have more surface
area, potentially increasing stress distribution capacity. In engineering design, fractal attributes extracted from
shapes offer insights into their complexity and their behavior under different conditions, and therefore, it is
no surprise that the length of the medial axis holds a very good rank among the extracted features. On the
other hand, the way a fractal structure branches out and the angles between branches hold information about
the underlying generative process of the shape. The power of fractal-based features is their ability to capture
intricate geometric details that traditional parametric models often miss. They provide a powerful feature for
engineers and designers to quickly analyze and optimize different design cases.

In CAD models, complex shapes are often represented by a multitude of parameters (dimensions, angles,
curvatures, etc.). Extracting features from alternative geometric representation can offer features with a highly
descriptive metric that encapsulates significant shape information. This dimensionality reduction is essential
for making the machine learning surrogate model more accurate and efficient as well as interpretable.

Another advantage of the introduced feature engineering process is that having such a reductionist approach
in finding new features provides a holistic measure that is relatively insensitive to minor boundary irregularities,
enhancing the reliability of machine learning models to design changes. This is because one problem with
prediction models is that when applying design iterations to the shape at hand, designers often are forced to
add or remove from the geometric shape (a simple example is adding a curve or removing a line shown in
Figure 1). This small change drastically affects how CAD parameterization has been done and will make the
trained model useless. In other words, using the approach introduced in this paper will prevent the design
change from propagating to the trained machine-learning model and allow for further analyses without the
maintenance of such models.

Moreover, specific CAD parameters might be highly domain-dependent. Feature engineering on CAD
replaces them with universally relevant geometric properties. Machine learning models trained with such
features have the potential to generalize better across different kinds of shapes and applications. However,
the disadvantage is the lack of understanding of specific prediction tasks and domain knowledge, which is
the biggest key to successful feature extraction and selection. As it is well known, correlation does not imply
causation. Finding a correlation suggests an association, but further investigation is needed to determine if
one variable actually causes changes in another. However, since the aim of feature engineering in CAD is
to find features for prediction models that are not dependent on the parameterization of the geometry, the
fact that it shows correlations or causation is not of importance. Because the selection process validates their
predictive power. Thus, the nature of the relation should not matter for the machine learning task that is
planned to be carried out further in the process.

The concepts of the medial axis, radius of constructing circles, and other derived features can be extended
into 3D analysis for even richer geometric insights. However, this study and further investigation of the
suggested features in Table 4 are planned to be pursued in future studies.
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8 CONCLUSIONS

The paper seeks to generalize the concept of sleeping parameters as an alternative way of using latent infor-
mation in CAD to construct, extract, and select features for data-driven approaches in engineering design.
Feature engineering has been used in data science to improve the quality of the inputs as a preprocess for
machine learning. By combining the medial axis representation with Voronoi-derived circle radii, we obtain a
rich set of features that capture both the skeletal and regional properties of complex shapes. These features
offer valuable insights for predictive tasks across diverse engineering domains. The methodology is showcased
on a crashworthiness case and is an example of how the medial axis can create new features that correlate
highly with the objective performance. We conclude that the application of this concept can also improve
the application of data science in engineering design by enabling much more efficient mapping between input
and output while it enables design loops to be independent of the CAD parameterization. By leveraging this
approach, engineers and designers can enhance the efficiency of design processes, facilitate iterative loops, and
improve the accuracy of regression models.
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