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Abstract. In this paper, we design a data structure for representing polyhedra that allows
the e�cient execution of global operations. Our research is motivated by the following
contradiction. In computer-aided design or modeling tasks, we generally represent surfaces
using edge-based data structures such as Winged edge, Half-edge, or Quad-edge. In contrast,
real-time computer graphics represent surfaces with Face-vertex meshes, since for surface
rendering, there is no need for the explicit representation of edges.

In most cases, when mainly local modi�cations are used (e.g. vertex split, edge �ip, face
removal), traditional Winged edge and Half-edge data structures perform well. However, for
global operations (a�ecting a large number of vertices, edges, and faces), the advantages
of edge-based data structures seem to diminish. We will show a novel data structure for
the representation of triangle meshes, that is based on the concept of Face-vertex meshes.
We will discuss, what additional topological information needs to be stored to obtain fast
traversal algorithms without representation of edges. In this paper, we compare the proposed
data structure with the industry-standard Half-edge data structure in several aspects.
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INTRODUCTION

Topological data structures play an important role in computer graphics and computer-aided design. They
provide e�cient and e�ective means for representing and manipulating complex geometric structures. These
data structures heavily rely on the topological properties of triangulations of surfaces. This knowledge is used
to quickly respond to queries regarding certain connectivity information.

The �rst topological data structure was the Winged-edge, which enables the store of polyhedra in a way
that allows e�cient execution of complex geometric operations [2]. The central element of the data structure
is the edge since storing a constant number of geometric entities is required to fully understand the local
neighborhood relations of edges, unlike, for example, faces where the number of vertices per face can vary.

Doubly connected edge list or Half-edge data structure extends the concept of the Winged-edge structure,
the key idea is to represent each edge as a pair of directed Half-edges, providing e�cient navigation between
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adjacent faces, edges, and vertices [14] [5] [13]. It is perhaps not an exaggeration to state that the Half-edge
data structure is an industrial standard. Libraries as widely used as OpenMesh [4] and CGAL [10] utilize it for
implementing mesh operations.

Another edge-based representation is the Quad-edge, where by swapping the pairs of vertices and faces
attached to edges, we can easily determine the dual of a mesh, therefore it can aid in problems such as
calculating the Voronoi diagram of a polyhedron [9].

The Render dynamic mesh is a representation that combines aspects of both the Face-vertex and Winged-
edge data structures, hence edges also play an important role here. The Render dynamic mesh was speci�cally
designed for the rapid execution of subdivision algorithms, but it may not be e�cient for performing local
manipulations [16]. There are some other other concepts, a very nice collection and comparison of boundary
representations of solid geometries can be found in [18].

As can be seen, most popular topological data structures explicitly include edges, but the edges are
the ones that are completely unnecessary for rendering. It is reasonable to question whether edges can be
omitted from a topological data structure. In this article, we present an approach that omits edges, closely
related to Face-vertex meshes, providing complete topological information with less overhead than edge-based
representations.

TOPOLOGICAL BACKGROUND

In our work, we considered polyhedrons de�ned by triangular faces. The surface of a polyhedron is a surface
also in terms of topology, i.e. it is an orientable compact 2-manifold, and there are some direct consequences
of this fact, that are explicitly used in mesh representation. It is important to emphasize that in this study
we only dealt with closed surfaces. In topological terms, a closed surface is a 2-manifold without boundary.
Later on, we will not highlight this, but when we mention 2-manifolds, we are thinking of 2-manifolds without
boundaries.

The Euler-formula for polyhedron states that if a polyhedron has n vertices, ℓ edges, and m faces then

χ = n− ℓ+m = 2(1− g),

where χ is the Euler-characteristic of the polyhedron, g is the genus of its surface [11]. Roughly speaking, the
genus determines the fundamental topological surface with which our polyhedron is topologically equivalent.
The classi�cation theorem of connected orientable compact 2-manifolds states that there are only 2 funda-
mental surfaces, the sphere g = 0 and g tori "glued together". Since the genus of most of the objects around
us is quite small (much less than n, ℓ,m), we can assume that χ ≈ 0. Another classic result of topology
is the triangulation theorem of 2-manifolds, which states that every 2-manifold is topologically equivalent
to the polyhedron of a 2-dimensional simplicial complex, in which every 1-simplex is a face of exactly two
2-simplices. The direct consequence of this theorem is, that in each polyhedron each edge corresponds to
exactly 2 triangles, and each triangle corresponds to exactly 3 edges, i.e.

2ℓ = 3m ⇐⇒ ℓ =
3

2
m.

Using this formula:

0 ≈ χ = n− ℓ+m = n− 3

2
m+m = n− 1

2
m ⇐⇒ m ≈ 2n,

0 ≈ χ = n− ℓ+m = n− ℓ+
2

3
ℓ = n− 1

3
ℓ ⇐⇒ ℓ ≈ 3n.

As a consequence, if we assume that a polyhedron consists of only triangular faces, then it has approximately
2n faces and 3n vertices.
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Figure 1: The local neighborhood of (a) an h Half-edge; (b) a v vertex; (c) an f face in Half-edge data
structure.

Another important topological concept is the orientability of a surface (2-manifold). Surfaces of real-world
objects are orientable, and we often utilize the orientability of a surface in data structures representing it.
Well-known counterexamples are the Möbius strip and the Klein bottle, which are non-orientable surfaces.
Instead of providing the precise de�nition of orientability, it su�ces for us to recall the orientability of surfaces
made up of polygonal faces. These surfaces are orientable if and only if there exists a consistent orientation
of the normal vectors of the faces. In our minds, let us choose an orientation for each face, i.e., let us orient
the edges of the face. This can be done in two ways for each face. The two di�erent orientations of vertices
de�ne two di�erent unit normals. It can be shown, the orientation of normals is consistent if and only if
the orientation of the shared edge of two adjacent faces is opposite on these two faces. We call the surface
orientable if there exists such a consistent orientation of the normal vectors. Summarizing the above, when
designing a data structure for storing closed orientable surfaces with polygonal faces, we take advantage of
the following.

� If a mesh is a compact 2-manifold, then each edge is shared by exactly two faces.

� If a mesh is orientable, the orientation of the shared edge can be opposite on the two adjacent faces.

� If we assume that a polyhedron with n vertices consists of only triangular faces and has a low genus,
then it has approximately 2n faces and 3n vertices.

HALF-EDGE DATA STRUCTURE

The Half-edge data structure is suitable for storing orientable 2-manifolds (with or without boundary) de�ned
by polygonal faces. As we will soon see, this representation e�ectively takes advantage of the properties
mentioned earlier. Let us assume, that each edge is shared by exactly two faces (2-manifold), and the
orientation of the common edge is opposite on these two faces (orientability). Due to this, each edge is
split in two obtaining the so-called half-edges, the central elements of the data structure. For each half-edge
h, we store the starting vertex (h → vertex), the associated face (h → face), its oppositely oriented pair
(h → twin), and the next half-edge (h → next), as you can see on Fig. 1 (a). Faces and vertices store only
a reference to a corresponding half-edge to which they are connected, see Fig. 1 (b) and (c). Most queries
related to neighboring information, which may be required in a modeling task, can be performed in constant
time in this data structure.

The storage cost can be estimated as follows. Let us suppose again that our polyhedron has n vertices, ℓ
edges, and m triangles. The coordinates of vertices are represented by �oating point numbers, while for each
adjacency information, an integer is required to store the index of the referenced geometric entity. Since both
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integer and �oating point numbers typically occupy 4 bytes of storage, we do not di�erentiate between their
storage cost, it is su�cient to count the number of data needed to be stored per vertex. The actual storage
requirement of the implementation can be obtained by multiplying the storage cost by 4 bytes. For Half-edge
data structure, we have to store the following.

� Half-edges (vertex, face, next, twin): 2 · ℓ · 4 = 8ℓ;

� Vertices (coordinates, half-edge): n · (3 + 1);

� Faces (half-edge): m · 1.

The total storage cost of the data structure assuming χ ≈ 0:

8ℓ+ 4n+m ≈ 8 · 3n+ 4n+ 2n = 30n.

SOLIDMESH DATA STRUCTURE

The SolidMesh data structure was originally created for being able to perform attach and detach operations
quickly, especially for real-time simulations where the user can break, slice, or glue objects together. It was
clear that the vertex and index array required for rendering do not contain enough topological information to
perform such tasks. On the other hand, we found that the Half-edge data structure is not suitable for the
purpose either, because after attaching or detaching, additional costly operations have to be performed to
create the new vertex and index arrays that de�ne the new meshes. This is the reason why we developed our
own data structure, which is enough close to the computer graphics representation of meshes, yet contains
enough topological information to perform complex mesh operations. On the other hand, the SolidMesh
implementation of attach and detach operations requires introducing additional advanced algebraic operations,
which are beyond the scope of this article.

One of the main reasons for the popularity of edge-based data structures is perhaps that, the part of the
surface can be described by a �xed number of geometric entities per edge (vertex, edge, face). If we store a
�xed amount of data for each edge, there is no need to use dynamic arrays or dynamic lists within the class
describing the edges. Therefore, when designing a new, face-based data structure, it is crucial to store a �xed
amount of data for each face (and vertex), similarly in the case of edge-based data structures. When designing
our data structure, we formulated the following requirements.

1. The representation should based on the vertex and index arrays used by the GPU.

2. Edges should not be explicitly represented.

3. A �xed amount of data should be stored for faces and vertices.

4. Global operations should be performed quickly.

Condition 1. and 2. imply, that the central elements of our data structure are necessarily faces. Condition
3. can not be ful�lled, unless each face has the same number of vertices. Since every polygonal face can be
decomposed into triangles, we choose triangular faces.

The e�cient execution of local operations occurring during modeling tasks was not a crucial consideration.
We would like to prepare the data structure for global operations where the entire vertex and index arrays
need to be traversed (detach, cut, split, smooth, subdivide, etc.). The Half-edge data structure allows e�cient
execution of local modi�cations, geometric information of a neighborhood of an edge is encapsulated into half-
edges. In the implementation of our data structure, we did not create a new face or vertex class, which would
achieve similar encapsulation. Instead, we added some extra (one- and multi-dimensional) arrays containing
all the necessary geometric information to the vertex and index arrays. The following section describes how
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our data structure is created, which is suitable for storing and manipulating orientable compact 2-manifolds
de�ned by triangular faces. It is important to note that the surface of a solid geometry is a connected
orientable compact 2-manifold, and conversely, each non-self-intersecting connected orientable compact 2-
manifold de�nes a solid. Our data structure is designed speci�cally for storing and manipulating the surfaces
of such solid geometries, where we extensively utilize the previously discussed topological properties. Therefore,
we will refer to this representation as SolidMesh in the subsequent discussions.

Maybe the simplest approach is to de�ne the SolidMesh data structure using functions with �nite domains.
Let us suppose, that I = {0, . . . , n− 1}, J = {0, . . . ,m− 1} and τ = {0, 1, 2}. Then the common represen-
tation of a mesh in computer graphics is a (V, T ) pair, where the V vertex array and the T index array can be
de�ned by the following functions: V : I → R3 and T : J × τ → I. The I, J sets refer to the indices of the
vertices and triangles, the τ set is responsible for storing the order of vertices within a triangle. τ is similar to
the ring of integers modulo 3, we de�ned the addition for any k ∈ Z as

∀j ∈ τ ∀k ∈ Z : j ⊕ k := (j + k) mod 3.

We found, that if we de�ne our data structure with the following functions, we achieve a similarly strong
topological descriptive capability as in the case of the Half-edge structure.

� V : I → R3 : the vertex coordinates. V (i) ∈ R3 de�nes the position of the i-th vertex.

� T : J × τ → I3: the index triplets of the faces. Let us suppose that the j-th triangle of our surface is
spanned by the V (p), V (q), V (r) vertices (p, q, r ∈ I). This fact can be formulated as follows:

T (j, 0) = p ∧ T (j, 1) = q ∧ T (j, 2) = r.

The edges are determined implicitly by T . We will assume that the k-th edge of the j-th triangle is a
directed edge from V (T (j, k)) to V (T (j, k ⊕ 1)) for k = 0, 1, 2.

� A : J × τ → J : the triangle adjacents of the triangles. A(j, k) = p if and only if the j-th triangle is
adjacent to the p-th triangle, and their shared edge is the k-th edge of the j-th triangle.

� α : J × τ → τ : the edge index of the adjacent triangle. α(j, k) = q if and only if the shared edge
between triangles j and A(j, k) is the q-th edge of the adjacent (A(j, k)-th) triangle. Now consider an
edge from T (j, k)-th vertex to T (j, k ⊕ 1)-th vertex. By de�nition, the α(j, k)-th edge of A(j, k)-th
triangle is the same edge between the two adjacent triangles. Since the orientation of the shared edge
is opposite, one edge's starting vertex coincides with the other edge's end vertex, and vice versa, i.e.

T (j, k) = T (A(j, k), α(j, k)⊕ 1), and T (j, k ⊕ 1) = T (A(j, k), α(j, k)).

� B : I → J : face index for a vertex. B(i) = j means that the V (i) vertex is a vertex of the j-th triangle.

� β : I → τ vertex index for a vertex. β(i) = q means that the V (i) vertex is the q-th vertex of the
B(i)-th triangle, i. e.

T (B(i), β(i)) = i.

� d : I → N: degree of vertices. The V (i) vertex has exactly d(i) vertex neihgbors.

Formally, our mesh representation is an (V, T,A, α,B, β, d) tuple. Since (V, T ) is the common representation
of a surface in computer graphics, V and T can be considered as the vertex array and the index array, which we
pass to the GPU for rendering. A visualization of domain and range sets of the functions de�ning a SolidMesh
data structure can be seen in Fig. 3. Most of the functions refer to the topology of the mesh, V is the only
function that stores geometric information. In Fig. 2 you can see an illustration of the connectivity information
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Figure 2: The local neighborhood of (a) the j-th triangle; (b) the i-th vertex in SolidMesh data structure.

Figure 3: Visualization of the of V, T,A, α,B, β, d function with their domain and range sets.

stored in our data structure.
The question arises as to why exactly this additional information is stored for individual vertices/triangles.

There may be many other options, but we have found that this information is necessary in order to be able
to answer each connectivity query e�ciently. Let us take a closer look at Fig. 3. In the set I we store the
indices of the vertices, and in J the indices of the triangles. Since we have identi�ed the edges with the edges
of triangles, the set J × τ can correspond to the set of edges. When we de�ne a mapping between two sets,
it means that we reach from one geometric entity to another. Based on these, we can draw the following
conclusions:

� T assigns vertices to edges/triangles,

� A assigns triangles to edges/triangles,

� A with α assigns edges to edges,

� B assigns triangles to vertices,

� B with β assigns edges to vertices.

As we can see, the α and β functions are not interesting in themselves, only as a supplement to the A
and B functions. By using α and β, we are able to store a reference to a speci�c edge. Therefore we don't
have to go around the edges of a triangle to �nd the vertex we are looking for. We store the degrees (d) for
another convenience function. In this case, vertices/edges/faces adjacent to a vertex can be listed without
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checking whether we have returned to the starting vertex or not. So, if the data structure is broken for some
reason, we will not get an in�nite loop during the query.

The storage cost of this data structure can be calculated as follows.

� Vertices (coordinates, face index, vertex index, degree): n · (3 + 1 + 1 + 1);

� Faces (3 vertex index, 3 adjacent triangle index, 3 edge index): m · (3 + 3 + 3).

Total storage cost assuming χ ≈ 0:

6n+ 9m ≈ 6n+ 9 · 2n = 24n.

COMPARATIVE TESTS

In our experiments we used an e�cient Half-edge data structure [14], and we implemented our proposed data
structure in C# language using Unity engine [6]. We compared the runtime of the Half-edge and SolidMesh
implementations for four di�erent tasks. These tasks, which we will discuss in detail in the following section,
were as follows:

1. Creation

2. Rendering

3. Laplacian smoothing

4. Loop subdivision

Each algorithm was run approximately 10 times, and the best runtime was recorded. The results are presented
in Table 1. and 2. We used 8 di�erent models as inputs for the algorithms, ranging from the minimum vertex
count of 8 to the maximum of 15002 vertices. The genus of the models also varies; we examined models with
genus 0, 1, and 2. According to this, their Euler characteristics are respectively 2, 0, and −2. These test
meshes can be seen in Fig. 4.

Creation

In this case, we measured the time it takes to create the topological data structures. We read the models
from Wavefront OBJ �les and stored the information about vertices and triangle indices in appropriate float
and int arrays. Then, by reading the vertex and index information from the temporary bu�ers, we created
Half-edge and SolidMesh data structures. The time taken for their creation was recorded in Table 1.

The SolidMesh data structure was created using Algorithm 2 and 1. The algorithm begins with a prepro-
cessing step, where edge information is collected for the �rst and only time. This information is stored in a
dictionary (or hashmap). The algorithm iterates over all the triangles, and the consecutive vertices (edges)
spanning the triangles are hashed as ordered pairs (χ1 and χ2). If the hashmap H does not yet contain a
value at the χ1 key, the pair (i, j) ∈ J × τ is stored there; otherwise, it is stored at the χ2 key. Note that
since we are dealing with compact 2-manifolds, the completed hashmap H will store, at the χ1 and χ2 keys,
the indices of triangles adjacent along the same edge and the index of their shared edge.

Formally, in the algorithm, the function h performs the hashing, mapping a pair of numbers from I2 to a
value in the key set K. The hashmap H then maps keys in K to elements in the J × τ set. We can formulate
the following

h : I2 → K, H : K → J × τ, H(h(p, q)) = (j, k) ⇐⇒ {p, q} = {T (j, k), T (j, k ⊕ 1)}.

After preprocessing, the main algorithm follows, which constructs the SolidMesh data structure. To do this,
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Figure 4: Test meshes with their vertex count (from left to right, top to bottom): Cube (8); Sphere (482);
Torusknot (880); 2-tori (1156); Bunny (2503); Ducky (5084); Mug (6390); Armadillo (15002).

Algorithm 1 BuildEdgeDictionary(V, T )

Require: V, T : vertex and triangle array
Ensure: H dictionary (hashmap) containing edge-triangle adjacencies
1: for j = 0, . . . , n− 1 do
2: for k = 0, 1, 2 do
3: χ1 := h(T (j, k), T (j, k ⊕ 1))
4: χ2 := h(T (j, k ⊕ 1), T (j, k))
5: if H(χ1) = ∅ then
6: H(χ1) := (j, k)
7: else

8: H(χ2) := (j, k)
9: end if

10: end for

11: end for

we need to iterate over the triangles again. The consecutive vertices of the triangles are hashed, but by this
point, the hashmap H is already �lled. Therefore, at the key χ1, we either store the currently examined triangle
or its edge-adjacent triangle. Consequently, we select the key that points to the neighboring triangle between
χ1 and χ2, and use this to populate the values of the arrays A and α Then, we update the degree of each
vertex, and the branch on line 13 is required solely to avoid double-counting the contribution of each edge to
the vertex degree. Finally, in the arrays B and β, we store a reference for each vertex to a triangle containing
it.
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Algorithm 2 CreateSolidMesh(V, T )

Require: V, T : vertex and triangle array
Ensure: (V, T,A, α,B, β, d) : SolidMesh representation of (V, T ) mesh
1: H :=BuildEdgeDictionary(V, T )
2: for j = 0, . . . , n− 1 do
3: for k = 0, . . . , 2 do
4: χ1 := h(T (j, k), T (j, k ⊕ 1))
5: (j1, k1) := H(χ1)
6: χ2 := h(T (j, k ⊕ 1), T (j, k))
7: (j2, k2) := H(χ2)
8: if j1 = j then
9: A(j, k), α(j, k) := j2, k2

10: else

11: A(j, k), α(j, k) := j1, k1
12: end if

13: if T (j, k) < T (j, k ⊕ 1) then
14: d(T (j, k)) = d(T (j, k)) + 1
15: d(T (j, k ⊕ 1)) = d(T (j, k ⊕ 1)) + 1
16: end if

17: B(T (j, k)) := j
18: β(T (j, k)) := k
19: end for

20: end for

Rendering

In this test, we measured the time it takes for Unity to pass the information necessary for rendering a Mesh

object [17], namely the positions of vertices and triangle indices using the SetVertices and the SetIndices
functions. To be entirely precise, in this test, we did not measure the actual rendering time, but rather the
time it takes to pass the data to Unity in a form that enables it to perform rendering.

Model Number of Creation time [ms] Rendering time [ms]

name vertices Half-edge SolidMesh Half-edge SolidMesh

Cube 8 0.04 0.04 0.06 0.04

Sphere 482 1.17 1.02 0.72 0.09

Torusknot 880 2.57 2.02 1.21 0.10

2-tori 1156 2.85 2.72 1.02 0.11

Bunny 2503 7.86 6.32 3.59 0.27

Ducky 5084 15.67 12.95 4.66 0.30

Mug 6390 18.39 17.48 5.43 0.34

Armadillo 15002 52.97 236.97 14.20 0.84

Table 1: Time costs of creation and render.
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Laplacian smoothing

Mesh smoothing or denoising is a task aimed at reducing or eliminating noise present in vertex positions.
Typically, this task is solved by applying some low-pass �lter that suppresses high-frequency variations on the
surface. The most commonly used procedures are iterative, but there are also single-step smoothing techniques,
as described, for instance, in [7]. Further information on mesh smoothing algorithms and their comparison can
be found in [3] and [1]. One of the most commonly used and simplest mesh smoothing algorithms is Laplacian
smoothing. In this iterative process, the following steps are performed for each vertex.

1. Calculate the centroid of the vertex's neighboring vertices.

2. Replace the vertex position with the position of the centroid, as illustrated in Fig. 5.

Figure 5: Laplacian smoothing: the position of the vertices is overwritten with the centroid of the neighboring
vertices.

It is important to note that position updates are performed simultaneously for all vertices, and the triangulation
of the surface remains unchanged throughout the operation. Therefore, during mesh smoothing procedures,
only vertex positions are updated. However, since this must be done simultaneously, a temporary bu�er must
be created to store the new vertex positions. At the end of the smoothing step, the data stored in the bu�er
must be copied into the original topological data structures. The above step is repeated until the desired
smoothness of the surface is achieved, emphasizing the importance of fast computation. Example iterations
of the Laplacian smoothing procedure are shown in Fig. 6. In the comparison, we measured the runtime of a

Figure 6: Results of Laplacian smoothing algorithm on the Armadillo model after 0, 4, 8, 12, 16 iterations,
respectively.

single step of Laplacian smoothing for models with di�erent numbers of vertices. The critical topological query
is the determination of neighboring vertices for each vertex. After that, the calculations can be performed
quite simply and quickly.

Loop subdivision

A general subdivision algorithm takes a polyhedron as input. During subdivision, we divide the faces of the
polyhedron into multiple faces and then reposition both the newly created and existing vertices according to
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a so-called subdivision scheme. The subdivision schemes are designed in such a way that repeated application
converges the polyhedron to a (once or multiple times) di�erentiable surface. A brief summary of popular
subdivision algorithms can be found in [8], and detailed studies on the topic are available in [15]. Loop
subdivision is a global operation de�ned for a polyhedron de�ned by triangular faces [12]. In each step of the
subdivision algorithm, the following operations are performed.

Figure 7: Loop-subdivision

1. Create a new vertex on each edge.

2. Connect the new vertices to split each triangle into 4 smaller triangles (see Fig. 7 (a)).

3. Calculate the positions of the new vertices as the barycentric combination of the two vertices spanning
the edge and the third vertices of the triangles that are sharing the edge (see Fig. 7 (b)).

4. Recalculate the positions of the old vertices as the barycentric combination of the adjacent old vertices
(see Fig. 7 (c)).

Figure 8: The �rst few steps of Loop-subdivision algorithm on a cube model.

An example of the results of the �rst few iterations of the subdivision scheme is shown in Fig. 8. As we
can see, the subdivision operation is not trivial; we need to break down every face of the polyhedron and
compute the coordinates of every vertex (new and old). By calculation of vertex positions the edge-adjacent
triangle pairs play an important role, therefore the Half-edge data structure is often chosen for implementing
this subdivision scheme. Unlike Laplacian smoothing, in this case, not only the positions of vertices but also
the triangulation changes. We create 4 new triangles for each original triangle. Therefore, after subdivision,
the entire data structure of both implementations needs to be replaced, utilizing the connectivity information
from before the subdivision.
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Model Number of Smoothing time [ms] Subdivision time [ms]

name vertices Half-edge SolidMesh Half-edge SolidMesh

Cube 8 0.02 0.01 0.10 0.02

Sphere 482 0.74 0.16 5.63 0.79

Torusknot 880 0.92 0.26 11.36 1.46

2-tori 1156 1.33 0.35 14.37 2.05

Bunny 2503 3.70 0.72 34.78 4.81

Ducky 5084 8.48 1.49 60.87 8.83

Mug 6390 9.05 1.93 71.99 11.12

Armadillo 15002 26.50 4.50 370.69 31.74

Table 2: Time costs of Laplacian smoothing and Loop subdivision.

CONCLUSIONS

Our results for creation and rendering are shown in Table 1., the smoothing and subdividing time costs can
be seen in Table 2. In this section, let us summarize our �ndings regarding the comparative tests:

1. Creation: both implementations performed similarly in our tests, with SolidMesh proving slightly faster
in all cases except for the Armadillo model. In this case, the creation of the SolidMesh data structure
took signi�cantly more time than constructing the Half-edge structure. We have not yet been able to
explain this substantial e�ciency drop, which deviates from the observed trend.

2. Rendering: this test is not entirely fair, as the SolidMesh data structure is speci�cally designed to
explicitly contain vertex and index arrays for e�cient rendering. However, it is an interesting question to
see how much better the optimized data structure performs compared to the industry standard. In the
case of the Half-edge data structure, both extracting vertex positions and determining the index triples
of faces are more costly than in the SolidMesh representation. Therefore, we reasonably assumed that
our own data structure would outperform in this test. Our assumption was con�rmed, sending the data
to the GPU required for the rendering is 10-15 times faster in SolidMesh than in Half-edge.

3. Laplacian smoothing: the SolidMesh implementation ran 3-5 times faster than the algorithm imple-
mented in the Half-edge structure, see the left side of Fig. 9. Upon analyzing the results, we concluded
that the speed increase does not arise from the di�erence in the number of operations but rather from
the fact that in the SolidMesh data structure, there is no need to allocate temporary memory for storing
neighboring vertices for each vertex. This is because all information is available in place due to not
applying encapsulation during the storing of local connectivity relations.

4. Loop subdivision: the SolidMesh implementation ran approximately 7 times faster than the Half-edge
implementation, see right side of Fig. 9. The increase in e�ciency in this test may have a similar
underlying reason as in the case of Laplacian smoothing. In the Half-edge implementation, eventually, a
completely new data structure needs to be constructed, whereas, in the SolidMesh implementation, we
can heavily rely on the data structure from before the subdivision. Reindexing of the individual faces and
vertices with complete maintenance of neighborhood relations can be quickly performed by examining
the subdivision scheme.
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Figure 9: Results of Laplacian smoothing (left) and Loop subdivision (right) on a log-log graph.

In conclusion, the SolidMesh implementation generally showed better performance across various tasks,
except for one single test. In the future, we plan the e�cient implementation of attaching and detaching
algorithms in the SolidMesh data structure. We hope that similar speed-ups can be observed in these cases
as well. If our prediction turns out to be correct, our surface representation could play an important role in
use cases where geometric objects can be cut, fractured, destructed, or glued together in real time.
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