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Abstract. In manufacturing plants, many articulated robots are installed and 
operated. These robots are required to operate without collision with other objects. 
For collision detection, it is effective in simulating robot motion in a faithful virtual 

environment. In recent years, it has become possible to acquire dense point clouds 
of manufacturing plants where many robots operate in cooperation. However, since 
the point clouds include articulated robots themselves, it is necessary to exclude the 
point clouds of the robots for the simulation of robot motion. In this paper, we 

propose a method for extracting articulated robots in arbitrary postures from point 
clouds of manufacturing plants. In our method, the CAD model and structural 
information of each robot are used as prior knowledge. CAD models of robots are 
available from the manufacturer in most cases, and the connection relations of the 
robot links can be described using the unified robot description format (URDF). Based 
on the link relations, the robot links are then aligned to the point cloud to determine 
the robot's posture. Other moving objects that operate with the robot, such as end 

effectors, wire harnesses, and other accessories, can also be detected from the point 
cloud by identifying the robot links. We evaluated our method using actual point 

clouds in an automobile factory. Our experimental results showed that our method 
could identify the postures of articulated robots from point clouds and provide the 
3D environment for robot simulation. 
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1 INTRODUCTION 

In manufacturing plants, many articulated robots work together. Each robot must operate without 
colliding with other robots or equipment. In addition, the robot must operate with high precision, 

stability, and efficiency. Therefore, robot teaching to obtain the optimal motion plan requires an 

enormous amount of labor, time, and cost. In general, robot teaching is performed by actually 
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moving the robot using a device such as a teaching pendant or by the operator directly moving the 
robot. However, robot teaching has several problems to be solved: operation time must be reduced 
because the production line must be stopped during the teaching process; skilled operators must be 
secured and trained because the quality and efficiency of the teaching depends on the technical skills 

and experience of the operators; and the robot needs to be carefully monitored for accidents caused 
by mishandling, such as contact with humans or damage caused by contact with objects in the 
robot's surroundings. For these reasons, off-line robot teaching is widely carried out before the 
teaching on actual robots. 

Recent advances in laser scanners have made it possible to obtain 3D geometric information 
about the current state of manufacturing plants. By using a terrestrial laser scanner (TLS), 3D data 
of a manufacturing plant can be acquired as point clouds of hundreds of millions to billions of points. 

Point clouds are useful for constructing a faithful virtual environment and simulating production lines 

in the virtual environment. In particular, off-line robot teaching based on the virtual environment is 
very effective in assembly factories where many articulated robots work together. However, point 
clouds include various objects, such as floors, machine tools, safety fences, and robots. In order to 
use point clouds for the simulation of robot operation, it is necessary to detect and segment such 
objects from point clouds. Especially, it is important to classify moving objects and fixed objects; 

moving objects include robots, end effectors, wire harnesses, etc., and fixed objects include 
workbenches, stands, tool boxes, floors, fences, etc.  

In robot motion simulation, if robots can be identified from the point cloud, the virtual 
environment can be created as a point cloud by excluding moving objects, and collision checks 
between the 3D models of robots and the virtual environment can be performed. Furthermore, points 
of attached parts and wire harnesses can be obtained as neighbor points of robot points. In most 
cases, these points are often not included in the CAD models of robots, but a precise collision check 

can be performed by adding these points to 3D models of robot links. It is desirable for precise and 

efficient motion planning to reconstruct faithful virtual environment of both moving and fixed objects. 

Many shape reconstruction methods from point clouds have been proposed [2]. Schnabel et al. 
[12] proposed the random sampling consensus (RANSAC) based method to detect primitive shapes 
such as planes, spheres, and cylinders. Li et al. [7] refined the detected primitives considering 
symmetries and structural repetitions among them. These methods can be used for reconstructing 
the shapes of industrial parts. However, they are not suitable for articulated robots, which consist 

of moving parts and do not have fixed shapes. 

For articulated robots used in manufacturing plants, their 3D CAD models are often available 
from the manufacturer. Therefore, the iterative closest point (ICP) [1] and the principal component 
analysis (PCA) [6] can be used for aligning each part of CAD models to the point cloud. Bey et al. 
[3] fitted CAD models to point clouds using Bayesian formulation. However, their method is not 
applicable when the object shape varies significantly with its posture, as in the case of a robot with 

articulated arms. 

The 3D model of an articulated robot can be considered as an assembly model with a joint 
mechanism of links. Shah et al. [13] fitted CAD models to point clouds by using a simulated annealing 
method to determine the parameters of assembly models consisting of several parts. Hu et al. [5] 
used deep learning and pre-defined CAD model templates to recognize objects from point clouds 
and to estimate parameters associated with the objects. These methods based on parameter 
estimation are effective when assembly models can be determined by sequentially identifying 

components from point clouds. However, articulated robots used in manufacturing plants often have 
closed loops of link mechanisms, and the point clouds of robots include accessories such as wiring 
harnesses, which are not included in CAD models. Moreover, since robots in a large-scale 
manufacturing plant have a variety of end-effectors, it is not easy to train machine learning 
classifiers to recognize various combinations of robots and end-effectors. In addition, since the same 
type of robots are used repeatedly in combination with various end-effectors, it is desirable to be 

able to easily define models of link mechanisms for robots and end-effectors. Therefore, there are 

difficulties in applying existing methods to the point clouds of articulated robots. 
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In this paper, we propose a method for extracting articulated robots in arbitrary postures from 
point clouds of manufacturing plants by fitting CAD models of robots and end-effectors. 3D models 
of robots are available from the manufacturer in most cases, and the connection relations of the 
robot links can be described using the unified robot description format (URDF). The URDF is an XML 

format for representing robot models and is commonly used in robot simulations [14]. The 3D model 
of a robot is an assembly model in which each link is represented as an independent 3D CAD model. 
In our method, the 3D model and URDF data of each robot are used as prior knowledge to obtain 
the assembly model that fits the point cloud. Then, the obtained 3D model is used to extract the 
point cloud corresponding to each link and to detect surrounding objects of the robot, such as wire 
harnesses. 

Our method covers vertical articulated robots with closed loops. For robots that have a serial 

link mechanism consisting of revolute joints, as shown in Figure 1(a), the parameters of the robot 

links can be determined sequentially. On the other hand, the large palletizing robot shown in Figure 
1(b) has a branched link mechanism. In such vertically articulated robots, there are link mechanisms 
with closed loops due to rigidity and loading. Since a closed-loop link mechanism cannot be 
represented by URDF, we represent the link mechanism using multiple URDFs consisting of a main 
chain and sub chains. The main chain is a link mechanism that determines the robot's posture. We 

refer to the links in the main chain as main links. The sub chain is a link mechanism that moves in 
conjunction with the main chain. We refer to such additional links as the sub links. 

To determine the robot's posture from the point cloud, the points corresponding to each robot 
link are extracted from the point cloud. First, a CAD model of the base link is aligned to the point 
cloud. The base link is defined as the root link installed on the floor or stand. Then, the main links 
are fitted by following the main chain from the base link, using the connection relations of the links 
described in the URDF. Since the sub-link moves in conjunction with the main chain, the CAD models 

of sub links are fitted after the main chain is determined, using inverse kinematics to calculate the 

posture. Finally, the points of all the links and the points of accessories such as wiring harnesses are 
extracted. The points of such moving objects are excluded from the point cloud in order to extract 
fixed objects. 

In the next section, we explain the description of the joint mechanism using the URDF. In Section 
3, we discuss the method of aligning the base link. In Section 4, we discuss the method of fitting 
main links. In Section 5, we discuss the fitting method of sub links. In Section 6, we discuss the 

extraction method of point clouds corresponding to the links. In Section 7, we describe experimental 
results, and finally, we conclude our research. 

 

 

              (a)                                                                 (b) 

Figure 1: Vertical articulated robots: (a) 6-axis small robots (KUKA KR 10 R1100 sixx), (b) Palletizing 
Robots (KUKA KR 700 PA). 

Base Link
The root link of the main chain

Main Chain
The link mechanism that 
determine the robot's posture

Sub Chain
Branched link 
mechanism
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2 URDF FORMAT FOR DESCRIBING LINKS AND JOINTS OF ROBOT 

The URDF maintains 3D models of links and their joint data. Figure 2(a) shows an example of URDF 
description consisting of links and joints in Figure 2(b). Each link, such as base_link, maintains the 
3D model of the link. Joint data, such as joint_1, maintains the relationships between the parent and 

child links, the rotation axis, and the rotation range. The relative position of the two links is 
represented as xyz and rpy, which indicates roll, pitch, and yaw angles. 

The robot assembly model shown in Figure 3(a) can be created by combining 3D models of links. 
Since a URDF cannot describe a closed loop, the robot model is specified by describing the main 
chain and sub-chains in URDF, as shown in Figure 3(b, c). In our method, the 3D model of each link 
is converted into a point cloud by randomly sampling points on the 3D model. In this paper, point 
clouds generated from 3D models are referred to as CAD point clouds and point clouds obtained 

using a TLS are called a TLS point clouds. Figure 2(d) shows an assembly model consisting of CAD 

point clouds. 

(a)                                                                   (b) 

Figure 2: Example of URDF: (a) Description of links and joints, (b) Links and joints. 

 

(a)                                   (b)                           (c)                            (d) 

Figure 3: Process of acquisition: (a) Robot model, (b) Main chain, (c) Sub chain, (d) CAD point 
clouds. 
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3 CALCULATION OF THE BASE LINK 

Since most robots and machine tools are installed on the floor in manufacturing plants, objects on 
the floor can be separated by removing the floor points, which consists of large horizontal planes. 
Planar regions such as floors can be effectively detected from TLS point clouds by using the method 

proposed by Masuda et al. [8]. This method maps a point cloud onto a 2D image using the azimuth 
and elevation angles of the laser beam, and planar regions are detected on the 2D image. Then, 
each robot is selected from the segmented point clouds using common classification techniques. We 
applied this method to point clouds of assembly lines in an automobile factory. When the floor points 
were excluded from the point clouds, each robot could be easily selected from the segmented objects 
because there were no other objects of the same size as robots. In general, deep learning methods 
such as PointNet [10] or PointNet++ [11], can be used for the classification of separated objects.  

After the point cloud of each robot is obtained, each link of the robot is detected from the point 

cloud. Since the main links of the robot are connected sequentially from the fixed base, it is important 
to detect the position of the base link as accurate as possible. This section discusses a method for 
calculating the position of the base link. 

3.1 Extraction of Candidate Points of the Base Link 

Figure 4(a) shows the point cloud of a robot. Each robot is installed on the floor or on a stand, which 
is a horizontal plane. To detect the installation plane, planes are detected from the point cloud of the 
robot, as shown in Figure 4(b). For the installation plane, a horizontal plane that is below the robot 
point cloud and larger than the size of the base link is selected. Depending on the posture of the 
robot, planes extracted from each robot link can be horizontal, but these planes can be distinguished 
from the installation plane because they are smaller than the size of the base link. In the example in 

Figure 4(c), the lowest plane is selected as the installation plane. 

The point cloud is converted to a k-nearest neighbor graph by creating edges between neighbor 
points, as shown in Figure 4(d). Then, Dijkstra's algorithm is applied at each point to calculate the 
shortest path from the installation plane. When starting the search for connecting edges from the 
 

(a)                                         (b)                                        (c) 

 

(d)                                         (e)                                        (f) 

Figure 4: Detection of points of the base link: (a) Point cloud, (b) Plane detection, (c) Selection of 

an installation plane, (d) K-nearest neighbor graph, (e) Distance from the installation plane, 
(f)Candidate points of the base link. 
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installation plane, only edges above the installation plane are traversed, while edges below the 
installation plane are ignored to avoid searching downward for non-robot edges. 

      In Figure 4(e), the color of each point indicates the distance of the shortest path. The shortest-
path distances are also calculated from the CAD point cloud of the base link, and the maximum 

distance from the installation plane is calculated for the base link points. The candidate points of the 
base link is selected as TLS points with distances shorter than the maximum distance, as shown in 
Figure 4(f). 

3.2 Registration of the Base Link 

The CAD point cloud of the base link is fitted to the candidate points of the base link. For rough 
registration, an oriented bounding box (OBB) is created from each of the CAD point clouds and the 
TLS point clouds, as shown in Figure 5(a, b). The OBB is created by mapping the points onto the 

installation plane and then performing 2D PCA to determine the orientation. Next, the CAD point 
cloud is moved to a position where the centers of the OBBs are coincident, and their heights from 
the installation plane are aligned. Then, the OBB of the CAD point cloud is rotated at equal intervals 
around an axis vertical to the installation plane so that the sum of the shortest distances between 

each point in the CAD point cloud to the TLS point cloud is minimized. As shown in Figure 4(c), the 
calculated position is used as the rough registration result. Finally, the sparse ICP algorithm [4] is 
applied for precise registration, as shown in Figure 5(d). 

 

 

(a)                            (b)                                 (c)                                     (d) 

Figure 5: Process of base-link registration: (a) OBB of base-link TLS points, (b) OBB of the base-link 
CAD points, (c) Result of rough registration, (d) Result of sparse ICP registration. 

4 CALCULATION OF MAIN LINKS 

In our method, the CAD point cloud of each main link is fitted to the TLS point cloud sequentially 

from the base link, as shown in Figure 6. Since the rotation axis of each link is defined in the URDF, 
the rotation angle of the link around the axis can be calculated. Initially, the rotation angle of each 
link is determined roughly, and then neighbor points of the roughly fitted CAD point clouds are 

extracted from the TLS point clouds as the candidate points of the link. The exact rotation angle is 
calculated by constrained registration using the relationships between links. 

To roughly determine the rotation angle at each joint, the CAD point cloud is rotated at equal 
intervals around the rotation axis defined in the URDF. The rotation angle is determined so that the 

sum of the shortest distances from each point in the CAD point cloud to the TLS point cloud is 
minimized. In order to improve computational efficiency, the shortest distances between the CAD 
and TLS point clouds are calculated on the 2D lattice created from the TLS point cloud. Each point 
of the TLS point cloud is measured by the laser beam emitted from the laser scanner, as shown in 
Figure 7(a). Therefore, the X, Y, Z coordinates of each point can be mapped on the 2D plane defined 
by the irradiation angles 𝜃 and 𝜙. As shown in Figure 7(b), the nearest neighbor of each point in the 

CAD point cloud can be efficiently detected from the neighborhood of the pixel to which the point is 

mapped. 

However, when the link shape is nearly rotationally symmetric, the rotation angle may not be 

calculated accurately using this method. For example, the link shape shown in Figure 8 is nearly 
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rotationally symmetric, and the center of the point clod is close to the axis of rotation. Such links 
change little when rotated. In such cases, to avoid large registration errors, the next child link is 
also used to calculate the rotation angle. 

Once the rotation angle is roughly determined, neighbor points of the roughly fitted CAD point 

clouds are extracted from the TLS point clouds as the candidate points of the link. The rotation 
angles of the link are calculated precisely by applying constrained registration to the candidate 
points. When the CAD point cloud is aligned to the TLS point cloud, the axis of rotation must coincide 
with the axis of rotation of its parent link. To satisfy this constraint, we introduce a constrained 
registration in which the two axes coincide. 

 

 

Figure 6: Fitting of main links. 

 

 

(a)                                                      (b) 

Figure 7: Neighbor search on 2D lattice of TLS point cloud: (a) Irradiation angle (𝜃, 𝜙) of the laser 

beam, (b) Neighbor search on the 2D lattice defined by the irradiation angles. 

 

 

 

Figure 8: Example of rotationally symmetric link. 

Base 
Link
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Each axis can be represented by two reference points on the axis. Let a and b be the reference 
points of the child link and 𝐚𝟎 and 𝐛𝟎 be the reference points of the parent link, as shown in Figure 

9(a). To align the axes of the two links, the rotation matrix 𝐑 and a translation vector 𝐭 are calculated 

so that the following equation is minimized: 
 

𝐸 = ∑|𝐑𝐩𝑖 + 𝐭 − 𝐪𝑖|2

𝑁

𝑖=1

+ λ(|𝐑𝐚 + 𝐭 − 𝐚𝟎|2 + |𝐑𝐛 + 𝐭 − 𝐛𝟎|2) (4.1) 

 
Where 𝐩𝑖 is a point in the CAD point cloud, 𝐪𝑖 is the nearest TLS point from  𝐩𝑖, and λ is a constant. 

𝐑 and 𝐭 that minimizes Equation (4.1) are calculated by iteratively updating the corresponding points. 

Finally, the CAD point cloud of the child link is moved to the position that coincides with the TLS point 
cloud so that the axes of rotation coincide, as shown in Figure 9(b). 

 

 
(a)                                                            (b) 

Figure 9: Constrained registration: (a) Constraints on revolute joints, (b) Registration result. 

5 CALCULATION OF SUB-LINKS: 

Once the rotation angles of the main links are determined, the parameters of the sub links are 
calculated using the positions and postures of the main links. Figure 10 shows link mechanisms 
commonly used in industrial robots. In these examples, since the positions of the links at both ends 
are determined by the fitted links, the positions and postures of the sub links can be computed as 
inverse kinematics solutions. 

 

 
(a)                                              (b)                                           (c) 

 
Figure 10: Link mechanism for sub-chain: (a) Revolute-revolute-revolute linkage, (b) Revolute-

prismatic-revolute linkage, (c) Revolute-revolute linkage. 
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In some cases, the solution is not uniquely determined. For example, the link mechanism in Figure 
11 has two solutions that satisfy the constraints of the main links. In such a case, the possible 
solution can be selected by considering the rotation range of the link and the interference with other 
links. In Figure 11(a), since the rotation angle is limited to a certain range, the solution closer to the 

initial angle is selected among the two solutions. In the case of Figure 11(b), one of the two solutions 
causes the connected links to separate, but such a situation does not occur in reality. 

 
(a)                                                                (b) 

Figure 11: Inverse kinematics solutions: (a) Revolute-revolute-revolute linkage, (b) Revolute-

prismatic-revolute linkage. 

6 EXTRACTION OF ADDITIONAL OBJECTS 

Once the positions and postures of all the links of the articulated robot are determined, the TLS point 
cloud for each link can be extracted by comparing the TLS point cloud with the fitted CAD point 
cloud. The remaining points that do not correspond to any link are considered end effectors, robot 

attachments, or wire harnesses. 

End effectors also consist of multiple links, as shown in Figure 12. Since the end effector is 

connected to the end link in the main links, the position and posture of the base link of the end 
effector can be determined. From the base link of the end effector, the position and posture of each 
link of the end effector can be determined sequentially in the same manner as the main links. 

Robot attachments move together with the links of the robot. Therefore, points of each 
attachment can be regarded as part of the links. This enhanced 3D model can be used for accurate 
collision detection in robot motion simulation. 

 

 

 Figure 12: Link mechanism of an end effector. 

7 EXPERIMENTAL RESULTS 

We evaluated the proposed method using the actual point clouds captured by a TLS. In our 

evaluation, the point cloud shown in Figure 4(a) and CAD models in Figure 13 were used. This point 
cloud was captured from a FANUC industrial robot used in an automobile factory. The point cloud is 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 22(4), 2025, 616-628 

© 2025 U-turn Press LLC, http://www.cad-journal.net 
 

625 

measured from multiple positions to reduce missing points due to occlusion. The robot is mounted 
with an end effector for welding and is composed of a main chain consisting of seven revolute joints 
and two sub chains enclosed by red rectangles, as shown in Figure 13.  

7.1 Evaluation with Actual TLS Point Clouds 

We fitted the 3D model of each link of the robot and the end effector to the actual TLS point cloud. 
The results are shown in Figure 14. By applying constraint registration, precise fitting results could 
be obtained even for the links with missing points. The auxiliary links could also be positioned in 
appropriate positions by computing the parameters of the sub chains. 

Next, we extracted the points on each link as neighbor points of the fitted CAD model. In Figure 
15(a), the points on each link are shown in a different color. Figure 15(b) shows an assembly model 
of the articulated robot with the end effector, with the same position and posture of the point cloud. 

Attachments, such as wire harnesses, are shown in black. As shown in Figure 15, the point clouds 
corresponding to the links were successfully extracted by using fitted CAD models, and robot 
attachments and wire harnesses were also successfully separated from the point clouds. 

In our method, since each link is aligned sequentially from the base link, registration errors 

may accumulate. In this evaluation, a misalignment of about 1 cm was observed on the end effector 
due to the accumulation of misalignment, as shown in Figure 16. In this research, only sequential 
registration was performed, but more accurate fitting would be possible by repeatedly refining 
registration results by using a multiview registration technique [9]. 

 

 
 

Figure 13: CAD models and the link mechanism of a FANUC articulated robot. 

 

 
 

Figure 14: Fitting 3D models of links to TLS point cloud. 
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(a)                                                                   (b) 

Figure 15: Segmentation of TLS point cloud: (a) Segmented point cloud, (b) CAD models aligned to 
point cloud. 
 

 
Figure 16: Accumulation of registration error at the tip of the end-effector. 

 

7.2 Evaluation with Virtual TLS Point Clouds 

It is difficult to quantitatively evaluate the accuracy of the positioning of robot links because the 

correct positions are not known. Therefore, we performed a quantitative evaluation by acquiring a 

point cloud from a CAD model using a virtual laser scanner and applying our method to the virtual 
point cloud. The virtual point cloud was captured from the robot with three different postures. In 
each posture, the assembly model of the robot was measured using a virtual laser scanner placed 
at six locations with equal angles on a circle with a radius of 5 m centered on the robot. In each 
measurement, 50 million virtual laser beams were irradiated, and the intersection points with the 
assembly model were calculated. 

For the virtual point cloud, rough and precise registrations were performed using the same 
method as for the actual TLS point cloud. Table 1 shows the errors of rotation angles calculated 
using our method at different postures. These results show that rough registration could estimate 
nearly correct rotation angles, and constrained registration effectively improved the rotation angles 
to more correct angles. This experiment shows that our 2-step registration is effective in accurately 
aligning 3D models to a point cloud. By using the fitted CAD models, we segmented the virtual point 
clouds into individual links. Figure 17 shows that virtual point clouds were precisely segmented for 

robots in various postures. 
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Joint 
Posture-1 [deg] Posture-2 [deg] Posture-3 [deg] 

Roughly Precisely Roughly Precisely Roughly Precisely 
1  0.5  0.002 -0.3 -0.068 -0.2 -0.022 

2 -0.2  0.014  0.4 -0.032  0.3  0.014 
3 -0.4 -0.058 -0.1 -0.086 -0.1 -0.037 
4  0.3  0.212  0.5  0.297 -0.2 -0.131 
5 -0.3 -0.241 -0.8 -0.189 -0.5  0.010 
6  0.1 -0.002 -0.7 -0.097  0.3  0.139 
7  0.2  0.193 -0.2 -0.243 -0.6 -0.539 

 

Table 1: Fitting result of the difference between calculated and set values of rotation angle. 

  

Figure 17: Segmentation of virtual point clouds into robot links. 

8 CONCLUSIONS 

This paper proposed a method to calculate the positions and postures of links of articulated robots 
with end-effectors from point clouds. The proposed method used the URDF for describing link 
mechanisms and fitted the 3D model of each robot link to a point cloud. Since the URDF was 
described using a combination of the main chain and sub chains, it could handle robot links with 
closed loops. For the main chain, the position and posture of each link were calculated sequentially 
from the base link, and for the sub chains, inverse kinematics was applied to determine their 

positions. By using the fitted 3D models, the point cloud of the robot could be segmented into 
individual links and attachments. Experimental results showed that our method could accurately 
determine the positions and postures of articulated robots, and point clouds of robots could be 
appropriately segmented. 

In the future, we would also like to develop an integrated method that can extract and classify 
various types of robots, end effectors, and attachments from point clouds to support motion planning 
of articulated robots. We would also like to develop methods for fitting detailed link mechanisms of 

various types of end-effectors as well as a wide variety of robots by supporting cases where the 
main chain branches or contains prismatic joints. In order to apply our method to various types of 
robots, we would like to investigate ambiguous cases in determining the positions and orientations 
of links. Although rotational symmetry was discussed in this paper, other ambiguous situations may 
arise in actual production lines, depending on the relationship between links and the shape of the 
links. As shown in Figure 16, sequential registration causes misalignment in the end effector. We 

want to investigate more accurate fitting methods for articulated robots such as multiview 
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registration. For improving accuracy, we might be able to use methods developed for human joints 
and other articulated objects. 
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