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Abstract. We extend and improve the MATHSM pocketing strategy by Elber, Cohen and
Drake (Comput. Aided Des. 2005) to obtain trochoidal tool paths inside of planar pockets
bounded by straight-line segments and circular arcs: We compute a dynamic spacing of
the machining circles such that the engagement angle stays below a user-specified maximum
engagement angle along the entire tool path. Since the amount of material removed is directly
linked to the engagement angle, this effectively bounds the material removal along the entire
path (for any given maximum feedrate). As a further improvement, we maintain a model of
the area already machined by the tool as the tool moves along the path. Experiments clearly
show that our improvements tend to result in substantially shorter tool paths compared to our
implementation of the original MATHSM method, while guaranteeing that the engagement
angle does not exceed the user-specified limit.
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1 INTRODUCTION

1.1 Cutting Width and Engagement Angle

Pocket machining is a roughing operation that clears out material within prescribed boundaries by the move-
ment of a tool (or the part to be machined) within a plane. The underlying geometric path planning problem
requires us to move a circular disk within a planar region such that the region has been fully swept at the
end of the movement. Traditional strategies for generating such paths include the use of zigzag patterns and
the use of offset curves to form contour-parallel patterns. See, e.g., Held [4] for a detailed discussion of both
strategies. More recently, smooth spiral-based paths (e.g., [1, 8]) and trochoidal-like paths [3] have been
applied.
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Virtually all CAD/CAM software packages offer options for generating tool paths according to one or more
of these strategies. However, while these paths can be expected to be correct from a purely geometric point
of view — in the sense that the tool clears out the material completely without any gouging — they do not
necessarily take into account key process parameters like the cutting width and the tool engagement angle.
The radial width of cut, υ, frequently simply called cutting width, is commonly defined as the radial amount
of the tool that is engaged in the material; see Fig. 1a. (A more formal definition, based on directed Hausdorff
distances, is given in [11].) Since the actual value of υ only makes sense relative to the tool diameter, some
machining handbooks prefer to regard the cutting width as the percentage s of the tool diameter D that is
engaged in the material:

s =
υ

D
(1)

For a movement of the tool along straight lines, the cutting width equals the immersion depth δ. It depends
linearly on the step-over distance between parallel lines of the tool path. Furthermore, it determines the
material removal rate and reflects the cutting forces experienced by the tool.
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Figure 1: Cutting width υ and engagement angle θ for linear and circular motion of a tool (depicted by a
red disk) along a tool path (shown in purple). The old machining contour is denoted by MC and the new
contour is denoted by MC ′. The unmachined material is shaded grey.

Unfortunately, the cutting width is no adequate proxy for the actual amount of material removed and
for the resulting cutting forces when the tool path exhibits an abrupt change of direction or when the tool
moves along circular portions of the tool path, see Fig. 1b and Fig. 1c. For instance, when the tool moves
along a straight line segment into a 90◦ corner, initially the material removal rate is constant, then it increases

Computer-Aided Design & Applications, 22(5), 2025, 731-747
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


733

monotonously until the tool reaches the actual corner vertex of the tool path, and then it drops instantaneously
to the same original constant value. Similarly, in Fig. 1c we see that the immersion depth δ may be significantly
larger than the cutting width υ. Note that υ is the same in Fig. 1a and in Fig. 1c. This problem pops up even
if the corresponding straight-line segments and circular arcs of the tool path are parallel or concentric.

The actual cutting forces are better reflected by the tool engagement angle θ: It is the angle subtended
by the circular arc that corresponds to the contact surface of the tool disk with the material being machined.
(In Figs. 1a to 1c this circular arc is shown in dashed green.) That is, for a (stationary) tool the engagement
angle is the angular amount of sweep subtended by each cutting edge of the tool as it engages and leaves
the material. The higher this angle is, the more cutting edges of the tool are involved in the process which
increases the material removal rate and, as a consequence, implies an increased cutting force.

Obviously, the engagement angle attains is absolute maximum, 360◦, when the tool plunges vertically down
into the material. During standard cutting moves the maximum of 180◦ is attained during full slotting moves.
For straight-line moves of the tool, the engagement angle is fairly easy to compute. Standard mathematics
yields for 0 ≤ θ ≤ 180 and 0 ≤ s ≤ 1

θ = arcsin(2s− 1) + 90 (2)

and
s =

1 + sin(θ − 90)

2
. (3)

The computation of the engagement angle gets significantly more complicated as soon as the current segment
of the tool path and the old machining contour are not two straight-line segments that are parallel. We
emphasize that the engagement angle of a tool centered at a point c on the tool path does not only depend
on the position of c relative to the old machining contour but also on the tangent vector of the tool path at c.

1.2 Prior Work

Since pocket machining is a basic task in manufacturing, a large number of studies on tool path generation
have been published in this context. Still, little is known about global strategies to generate tool paths such
that a user-specified maximum engagement angle is not exceeded. Most pocketing papers either ignore the
engagement angle completely or provide only heuristics and, at best, try to argue experimentally that the
engagement angle can be controlled.

For instance, Bieterman and Sandstrom [1] employ second-order partial differential equations to generate
spiral tool paths that start out along a nearly circular segment and slowly morph towards the pocket boundary.
Their experiments show that these spirals extend tool life significantly when cutting hard materials. This
observation can be taken as an indication that the engagement angle stays within reasonable bounds. Similarly,
the spiral tool paths by Held and de Lorenzo [8] guarantee to respect a user-specified maximum cutting width
but no formal guarantee is given regarding the engagement angle. However, also their experiments show
that a fairly uniform engagement angle is achieved. Wang, Jang and Stori [19] use metrics to evaluate key
process parameters. These metrics allow them to optimize contour-parallel tool paths such that the average
engagement angle is improved, but in the worst case the engagement angle might still jump (close) to 180◦.

Stori and Wright [17] study spiral-in tool paths for convex pockets such that the engagement angle can
be controlled along most portions of the path. General pockets have to be decomposed into convex pieces.
The restriction to convex geometries is removed by an extension of their approach described by Ibaraki et
al. [13]. However, Dumitrache, Borangiu and Dogar [2] report that their own reproduction of the tool paths
of [13] witnessed switching between conventional and climb milling (and vice versa). Kim, Lee and Yang [16]
use pixel-based computations to assess the material-removal rate of standard contour-parallel tool paths. The
material removal rate is kept within bounds by replacing sharp corners of the paths with one or more trochoidal
segments. Uddin et al. [18] focus their study of engagement angles on the last finishing paths along the pocket
boundary.
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More recently, Jacso, Matyasi and Szalay [14] published the “fast constant engagement offsetting method”
(FACEOM). Their algorithm allows them to achieve a constant engagement angle relative to a given parametric
curve. However, it remains completely unclear how their approach could be applied on a more global level
such that a tool path can be planned for an entire pocket. (The follow-up paper [15] also does not contain
figures of full tool paths for a pocket.)

1.3 Our Contribution

We provide an extension of the (one-sided) MATHSM trochoidal pocketing strategy by Elber, Cohen and
Drake [3] for pockets (without holes) bounded by straight-line segments and circular arcs. Rather than
blindly resorting to some fixed constant step-over distance, we adapt the step-over distance between each
pair of subsequent circular path segments such that the tool engagement angle reaches but never exceeds a
user-specified limit. Since the amount of material removed is directly linked to the engagement angle, this
effectively bounds the material removal along the entire path for any given maximum feedrate. As a more
global optimization, we keep track of the area already machined. This allows to increase the step-over distance
even further if previous machining operations in other parts of the pocket have already covered some portion
of the material that is currently to be removed. Furthermore, by analyzing the pocket geometry we are able to
dynamically adapt the limit on the engagement angle depending on the “narrowness” of parts of the pocket.
Experiments clearly show that our improvements tend to result in substantially shorter tool paths compared
to our implementation of the original MATHSM method, while guaranteeing that the engagement angle does
not exceed the user-specified limit.

2 TOOL PATH COMPUTATION

2.1 Basics

We study tool paths for pockets bounded by straight-line segments and circular arcs. A pocket P is assumed
to be a simply-connected region of the plane. That is, no holes or islands are allowed. Our approach can be
extended to multiply-connected pockets as described in [3], or by introducing “bridges” [12, 8].

The pocket boundary ∂P is assumed to be one Jordan curve that is oriented counter-clockwise (CCW).
This orientation imposes an orientation of the straight-line segments and circular arcs of the boundary in a
natural way. We call a circular arc concave if it is oriented clockwise (CW), and convex otherwise.

As usual, a disk centered at a point p within (the closure of) P is called a clearance disk if the entire
disk is completely contained inside (the closure of) P and if its radius cannot be enlarged without protruding
outside of P. Hence, a clearance disk touches ∂P in at least one point. The radius of the clearance disk of a
point p is called the clearance distance of p. Roughly, the medial axis of ∂P (within P) is given by the union
of the centers of all those clearance disks of P that touch ∂P in at least two disjoint points. The medial axis
is a subset of the Voronoi diagram of ∂P, and it can be derived easily from the Voronoi diagram. We refer to
Held [4, 7] for a detailed discussion of Voronoi diagrams, medial axes and their use for offsetting.

It is obvious that only those parts of a pocket can be machined that can be covered by the tool disk with
radius r without resulting in gouging. We call a pocket machinable if it equals the union of the disks of radius
r centered at all points inside of P whose clearance distance is at least r. To convert an input pocket to
a machinable pocket, one could (1) compute an interior offset of the pocket boundary for offset distance r
and (2) compute an exterior offset with offset distance r of that interior offset. If the original pocket was
machinable then the resulting exterior offset would be identical to the boundary of the input curve.

Since our implementation relies heavily on Voronoi diagrams and medial axes computed by means of
Vroni/ArcVroni [6, 9], we ensure the machinability of the input geometry by computing offsets by means
of the Voronoi diagram of the pocket boundary and subsequent modification of the input geometry and its
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Voronoi diagram. The basic ideas for obtaining the boundary of the machinable area (relative to a tool radius
r) from an input geometry are sketched in Fig. 2.
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Figure 2: Illustration of the transformation from original input to the machinable pocket boundary. In (a)
the medial axis (black) and the other Voronoi edges (orange) of the pocket boundary (dark green) are shown.
The red tool disk (with radius r) is depicted in the upper-left corner. (For the sake of visual clarity, a fairly
large tool is used.) In (b) clearance disks (brown) are centered on the intersection points of the offset curve
(dashed turquoise) for radius r with the medial axis. In (c) and (d) the modified Voronoi diagram and the
new pocket geometry can be seen. The offset curve in (d) for the modified contour is the same as in (b) for
the original input.

For the sake of simplicity, in the sequel, we assume that the entire pocket P is machinable relative to the
tool radius r. Actually, to avoid special cases in our algorithm, we assume that all convex arcs of the pocket
boundary ∂P have radii that are strictly greater than r. (That is, the transformation sketched in Fig. 2 is
carried out for an offset distance r + ε, for some small ε > 0.) When talking about Voronoi diagrams and
medial axes we will be sloppy and simply refer to the Voronoi diagram of ∂P restricted to the interior of P as
the Voronoi diagram of P; similarly for the medial axis of P.

Our tool paths are suitable for conventional milling, also known as up-cut milling. It would be straightfor-
ward to modify our approach such that climb milling is supported.

2.2 MATHSM Algorithm

In a nutshell, the “medial axis transform toward high-speed machining of pockets” (MATHSM) algorithm by
Elber, Cohen and Drake [3] uses the medial axis of P to compute clearance disks. The circles of these clearance
disks are then combined to form a trochoidal path. The path is an alternating series of “machining circles” and
tangential “transition elements” between pairs of machining circles. A “central MATHSM” algorithm and a
“one-sided MATHSM” algorithm are introduced in [3]. Since our algorithm generalizes the one-sided MATHSM
algorithm, we will only sketch this variant.

Consider a point ci−1 with clearance disk Ai−1 and clearance distance ρi−1 + r within P (for ρi−1 > 0).
(In the sequel we will also take the liberty to regard Ai−1 as a clearance circle rather than a disk.) The circle
Mi−1 centered at ci−1 with radius ρi−1 is the machining circle of ci−1, and ci−1 is its machining center. By
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the definition of clearance disks, this circle is fully contained within the interior of P. If ci−1 does not lie on
the medial axis of P then Ai−1 touches ∂P in exactly one point pi−1. Similarly for some other machining
center ci and its machining circle Mi; cf. Fig. 3. In the sequel we will frequently need to talk about moving
the tool disk in such a way that its center is moved along some curve. We simplify diction and simply talk
about moving the tool (disk) along that curve.

Mi−1

Ai−1

Mi

Ti−1
ci−1

ci

pi−1

pi Ai

mi
mi−1

edges of medial axis of P

qi−1
qi

Figure 3: The basic building blocks of a MATHSM path: Two subsequent machining circles Mi−1 and Mi

and the transition element Ti−1 (in turquoise) for linking them. The pocket boundary ∂P is indicated by a
dark green line and its offset curve (for offset distance r) is drawn as a dashed turquoise line. The three small
red circles depict the tool disk.

These machining circles are the main curves along which the tool disk is moved. In order to end up with
one continuous path, two subsequent machining circles Mi−1 and Mi are linked by a transition element Ti−1

as follows: The offset curve for offset distance r is intersected with the line segment between ci−1 and pi−1,
yielding a point qi−1. (Note that we get indeed one offset curve rather than a family of offset curves since P
is machinable.) Similarly we get qi as the intersection of the line segment between ci and pi with the offset
curve. Then Ti−1 is obtained by moving along the offset curve from pi−1 to pi in CCW manner.

The construction described above yields the following part of a trochoidal tool path: The center of the
tool starts at qi−1, moves along Mi−1 once in CCW direction until it returns to qi−1, and then proceeds along
the transition element Ti−1 to qi. From there it would continue CCW along Mi, etc. Since the area swept
by the tool when moved along Mi−1 is a subset of the clearance disk Ai−1, no gouging can occur during this
motion. And, by construction, no gouging can occur when the tool moves along Ti−1. We conclude that any
tool path built by such an alternating sequence of machining arcs and transition steps is free of gouging.

It is obvious that a distant spacing of the machining circles as shown in Fig. 3 would not be suitable for a
real machining process. For the one-sided MATHSM, Elber et al. [3] place a machining center ci such that it
is the midpoint of qi and the (closest) intersection point mi of the medial axis of P with the line through pi
and ci. Thus, the line segment between mi and qi forms a diameter of Mi with center ci; see Fig. 3.

Suppose that all material within Ai−1 has been removed. Then ci should be placed such that the region
formed by the union of Ai−1 and the area swept by the tool disk when moved along Mi is path connected
and simply connected. This goal is achieved if during the entire move of the tool along Mi the tool disk and
Ai−1 intersect. Standard high-school mathematics leads to the following condition on the maximal spacing of
ci relative to ci−1:

∥ci − ci−1∥+ ρi − ρi−1 ≤ 2r (4)

The actual spacing of the machining centers is not discussed in [3]. However, comments in its section on
extending the basic MATHSM algorithm suggest that some (unknown) constant spacing is applied, either with
∥ci − ci−1∥ or with ∥mi −mi−1∥ being constant.
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In order to plunge the tool into the material at the start of the tool path, Elber et al. [3] suggest spiraling
down along some machining circle M0 until the required depth of cut is reached. The final result of their
algorithm is a trochoidal tool path that allows clearing all material within a pocket without gouging.

The obvious advantage of MATHSM is that the tool path is G1 continuous. Furthermore, since it consists
predominantly of circular arcs with fairly large radii, the radial acceleration exerted on the tool is minimized [3].
The material removal rate changes along a MATHSM path: It decreases and increases, with actual machining
taking place along about one half of the path. (This is a feature inherently linked to the nature of MATHSM
paths.) Worse, depending on the unclear constant spacing of the machining centers and the geometry of the
pocket, the material removal rate may change drastically and may be fairly high. But it is important to note
that this change is continuous at any position on a MATHSM path.

At the end of their paper, Elber et al. [3] comment that a dynamic strategy that adapts the spacing
distances according to machining parameters can be expected to be beneficial. In the rest of this paper, we
pick up this lead and explain how to extend their MATHSM algorithm such that a spacing of the machining
centers is obtained that guarantees to keep the tool engagement angle below a user-specified limit.

2.3 Computing the Engagement Angle

Suppose that the tool with radius r has moved along the machining circle Mi−1 with radius ρi−1 centered
at ci−1, and suppose that all material within the circle Ai−1 has been removed. Recall that Ai−1 has radius
r + ρi−1 and is also centered at ci−1. After traversing the transition step Ti−1, the tool will move in CCW
direction along the next machining circle Mi centered at ci. In the rest of this subsection, we regard r, ci−1,
and ρi−1 as fixed. The MATHSM construction implies that ρi is also fixed once ci has been fixed.

Let q be a position of the tool center on Mi for which cutting occurs. We denote the intersections of the
tool circle with Ai−1 by a and b, with b being that point the tool has not yet swept over, cf. Fig. 4a. (These
two intersections have to exist for any meaningful spacing of ci−1 and ci; otherwise, material would be left
uncut between Ai−1 and the region swept by moving the tool along Mi.) The intersection point of the ray
from ci through q with Ai is denoted by w. Then the engagement angle of the tool centered at q is given by
the angle θ := ∠bqw at the vertex q of the triangle ∆(b, q, w). We note that fixing the position of q on Mi

also fixes the position of b on Ai−1, and vice versa.
For which position q of the tool center on Mi is θ maximized? Trivially, maximizing θ is equivalent to

minimizing the angle ∠ciqb at the vertex q of the triangle ∆(ci, q, b). By construction, we have ∥q− ci∥ = ρi
and ∥q − b∥ = r. That is, these two edges of ∆(ci, q, b) have fixed constant lengths. We conclude that the
angle ∠ciqb is minimum exactly if the edge length ∥b − ci∥ is as short as possible. This happens when the
points ci−1, ci and b are collinear and occur in that order along the common line, cf. Figure 4b.

However, naïvely placing q on Mi such that ci−1, ci and b are collinear may lead to an overestimation of
the maximum engagement angle that occurs while moving the tool along Mi: Figure 4c shows a setting where
w ends up within Ai−1. Since the tool does not interact with the material at w, the angle ∠bqw exceeds the
true engagement angle for this tool position. Now recall that moving b away from the line through ci−1 and
ci (along Ai−1) causes the engagement angle to decrease. Hence, we move b in CCW direction along Ai−1

just far enough to allow w to coincide with the intersection of Ai−1 and Ai.
We conclude that the maximum engagement angle can be determined as follows: (1) Consider the ray u

that starts at ci−1 and passes through ci, and obtain the intersection point b by intersecting u with the circle
Ai−1, cf. Figure 4b. (2) Intersect the tool circle centered at b with the circle Mi; the intersection point that
is right of the ray u is the point q sought. (3) Intersect the ray from ci through q with the circle Ai, thereby
obtaining w. If w is outside of Ai−1 then let θ := ∠bqw. Otherwise, as illustrated in Fig. 4d, in (4) obtain w
as the intersection of Ai−1 and Ai. (Again pick the intersection point right of the ray u.) (5) Compute q as
the (first) intersection of the ray from w through ci with Mi. (6) Obtain b as the other intersection of Ai−1

with the tool circle centered at q, and let θ := ∠bqw.
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Figure 4: Computing the maximum tool engagement angle when the (red) tool disk is moved CCW along the
machining circle Mi, under the assumption that no material is left within Ai−1. In (a) the setting is shown for
a position q of the tool center; the engagement angle θ is given by the angle ∠bqw. The material yet to be
removed is shaded grey. For the same geometric setting of Mi−1 and Mi and the same tool radius, in (b) the
tool position q for which the maximum engagement angle relative to Ai−1 is assumed is shown. Subfigure (c)
shows a setting for which the engagement angle would be overestimated if ∠bqw would be considered because
w lies within Ai−1. For this setting, the correct maximum engagement angle is shown in (d).

These computational steps can be cast into an explicit formula for θ in dependence on the machining
center ci and radius ρi. We sketch how the formula for the setting shown in Fig. 4b is derived: Without loss
of generality, suppose that ci coincides with the coordinate origin and that b lies on the positive x-axis. (This
can be achieved by applying a suitable rigid motion.) Let bx denote the x-coordinate of b. (It is given by the
x-coordinate of ci−1 plus (ρi−1+ r).) The point q is an intersection point of the circle x2+y2 = ρ2i (centered
at the origin ci) with the circle (bx − x)2 + y2 = r2 (centered at b). We get

qx =
b2x − r2 + ρ2i

2bx
(5)
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and

qy = −

√
ρ2i −

(b2x − r2 + ρ2i )
2

4b2x
. (6)

The point w is given by q plus the unit position vector of q times r. Since the dot product of the unit vector
from q to w with the unit vector from q to b equals the arccosine of θ, we get (with the help of Mathematica)
the following simple formula for θ:

θ = arccos

(
b2x − r2 − ρ2i

2rρi

)
(7)

The formula for θ for the setting of Fig. 4d can be derived similarly, but it is a bit more complicated. We
refrain from stating the formula because it provides little additional insight.

2.4 Determining the Next Feasible Position of a Machining Circle

We are now ready to describe how the next machining center ci is determined such that the maximum
engagement angle θ stays below a user-specified limit θmax < 180. (If θmax := 180 then even full slotting
moves were allowed and no tool path would exceed this limit.) Obviously, no machining occurs if ∥ci−ci−1∥ = 0
and, thus, θ = 0. The maximum engagement angle starts to grow as soon as ci is moved away from ci−1 in
the direction of the unmachined material.

The explanation given in the previous subsection allows to compute the maximum engagement angle θ for
any machining center ci (relative to ci−1 and ρi−1). Unfortunately, we have not been able to find a closed-form
solution for the inverse problem: Given θmax, compute ci such that moving the tool along Mi centered at ci
results in a maximum engagement angle θ = θmax.

As illustrated in Fig. 3, the MATHSM algorithm places ci on a “middle” curve between the medial axis of
P and ∂P: The machining center ci is at a distance ρi from the point mi on the medial axis and at a distance
ρi + r from its normal projection pi onto ∂P. Inequality 4 implies a trivial upper bound on the maximum
permissible distance d of ci from ci−1:

d < 2r + ρi−1 − ρi < 2r + ρi−1 (8)

If the distance d equals or exceeds 2r + ρi−1 then a full slotting move occurs and the engagement angle is
guaranteed to be 180◦.

Summarizing, for d := 0 we have θ = 0 and for d := 2r+ρi−1 we have θ = 180. Hence, we apply bisection
to find a suitable spacing distance d between ci−1 and ci such that θ = θmax. In our implementation, we
stop the bisection routine as soon as (in radian) θmax − ε ≤ θ ≤ θmax for ε := 0.001. Experience drawn
from myriads of invocations of the bisection routine tells us that the bisection needs 9–18 iterative steps to
converge.

Of course, we do not attempt to model the “middle” curve between the medial axis and ∂P explicitly as
the loci of all potential machining centers. (Since the edges of the medial axis are portions of conics it would
be rather awkward to come up with a precise mathematical expression for this curve.) Rather, in parallel we
move away from pi−1 along ∂P (in CCW direction) towards pi and accordingly from mi−1 along the medial
axis towards mi. This traversing of the medial axis required for locating mi is very similar to the traversing
required for offsetting, and we refer to literature on Voronoi-based offsetting for details; see, e.g., [4].

Since our implementation relies on Vroni/ArcVroni [6, 9] for the computation of the medial axis, we
benefit from its specific way of storing Voronoi diagrams and medial axes as planar graphs. In particular,
Vroni/ArcVroni stores (via a formula) the clearance distances of the points of the medial axis. Thus,
once mi has been fixed, the distance from mi to pi is known without any need for further computation.
Furthermore, for every edge e of the medial axis and, thus, also for every point mi on e, the corresponding
boundary segments of ∂P (on the left and right side of e) are known.
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3 IMPROVING THE TOOL PATH

3.1 Keeping Track of the Machined Area

Recall that mi lies on some edge e of the medial axis and that the circle Mi passes through mi; cf. Fig. 3.
Hence, the disk Ai will protrude over e. Since the interior of Ai models (a super-set of) the area machined
by the tool when moving along Mi, it is important that Ai contains points on both sides of e. That is, this
overlap ensures that the pocket gets machined completely.

On the other hand, this overlap implies that it makes a difference whether or not the other side of e has
already been machined when driving the tool along Mi: If the other side of e has already been machined then
a smaller portion of Mi will result in the actual removal of material. In particular, in this case the maximum
engagement angle along Mi may be smaller than without previous machining on the other side of e, and
our scheme may overestimate this angle. As a consequence, we may end up picking an unnecessarily small
distance between ci−1 and ci. Such an overestimation of the engagement angle would not render the tool
path invalid but it should be expected to be a source of inefficiency because it will make the tool path longer
than necessary.

As a remedy, we model the area machined by the tool so far and restrict the computation of the engagement
angle to that portion of Mi along which genuine machining occurs. Since we are mostly interested in the
neighborhood of the edges of the medial axis, we may neglect the transition elements and focus only on the
machining circles for modeling the machined area. Thus, when moving the tool along Mi, the area machined
so far is given by (a super-set of) the union of the disks A0, A1, . . . , Ai−1. (In general, the area machined is
a genuine super-set of the union of these disks since cutting also takes place when the tool is moved along
the transition elements.) This is a union of disks whose foot-points p0, p1, . . . , pi−1 are sorted in CCW order
along ∂P. Similarly, the order of these footpoints along ∂P induces an order on m0,m1, . . .mi−1. That is,
the important insight is that we do not have to struggle with the union of a random arrangement of disks but
with disks that are sorted relative to ∂P.

The boundary of the union of these disks is given by a sequence of circular arcs that are sorted according
to the order of their underlying disks. In order to update the boundary when Ai is added, it suffices to scan
the sequence of the underlying disks “backwards” in CW direction. If an arc s of the boundary is contained
completely within Ai then s is not required for any future computations and we remove it from the boundary.
If, however, the arc s intersects the circle Ai then we compute the point of intersection, shorten s accordingly
and split Ai into two arcs; one of these arcs can also be discarded. Thus, either s is shortened and the check
for intersections may stop, or it can be discarded entirely. This is the key property that allows us to maintain
the boundary of the union of these disks efficiently. In terms of complexity, maintaining this boundary results
in an amount of extra work that is linear in the number of machining circles.

The contour of the area already machined is used during the computation of the engagement angle for
a newly positioned machining circle, recall Fig. 4: If the point b determined by our algorithm lies within the
area already machined then it is moved in CW direction along Ai−1 until it matches the intersection of Ai−1

with that contour. This decreases the engagement angle to its correct value. We call this improvement of our
“standard” approach the “contour-aware” approach.

3.2 Dynamic Adjustment of the Maximum Engagement Angle

Discussions of the second author of this paper with NC engineers who use trochoidal paths for practical
machining applications made it apparent that expecting a user to set a fixed limit θmax on the engagement
angle may not be good enough in practice when machining hard metal. Apparently, if the tool is immersed
deeply and if the material removal is constrained to a small region bounded by uncut material then some chips
may be not thrown out of the pocket. However, in that case those chips may end up being cut a second time,
which may cause them to become extremely hot, thus welding them to the surface. As a consequence, in such
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a case it may be desirable to reduce the material removal rate, i.e., to decrease the limit on the engagement
angle.

Typical places where such a problem is more likely to occur are bottlenecks of ∂P. Fortunately, identifying
bottlenecks of ∂P is straightforward if its Voronoi diagram is known. Due to Vroni’s parameterization of
the edges of a Voronoi diagram, a simple graph search suffices to identify all bottlenecks in time linear in the
number of segments of ∂P. Furthermore, the widths of the bottlenecks can also be obtained easily; see [5]
for details.

Thus, we proceed as follows: We scan the medial axis and determine all bottlenecks together with their
widths. The bottlenecks get marked on the medial axis and on ∂P. When the tool path moves for the first
time through a bottleneck — that is, if no machining has already taken place on the other side of the current
edge of the medial axis — then the limit for the engagement angle is reduced. In our implementation, we use
a simple linear reduction of the limit relative to the width of the bottleneck. But, of course, more elaborate
user-supplied functions could be applied instead. If, however, the tool passes through the bottleneck for the
second time and, thus, the area on the other side of the edge of the medial axis has already been machined,
then we stay with the user-specified limit θmax. (Depending on the specific machining situation, one may want
to reduce θmax in this case, too.)

4 RESULTS OBTAINED

We implemented our algorithm in C++. As already stated, Voronoi diagrams and medial axes are computed
by means of Vroni/ArcVroni [6, 9]. A constant spacing of the machining centers rather than a spacing
based on the maximum engagement angle allows us to use our implementation to generate paths that mimic
the original MATHSM algorithm.

In our experiments, we studied the lengths of the tool paths and the distributions of the engagement angles
along the paths. While summing the lengths of the individual straight-line segments and circular arcs suffices
to compute the length of a path, assessing the engagement angles along a path requires a higher effort. For
the sake of implementational simplicity, we resorted to a discretization and computed the engagement angles
for a myriad of densely spaced positions of the tool center along a path. (The engagement angles for different
tool positions can be computed similarly to the formula given in Eq. (7).)

Since there is no apparent relation between the constant spacing d of the machining centers and the
resulting maximum engagement angle for the MATHSM algorithm, we resorted to a brute-force solution: We
varied the value d in tiny increments from small to large (relative to the tool radius and the geometry of a
pocket), computed for every value of d the MATHSM path and recorded its maximum engagement angle (and
its length). Of course, if different spacing distances resulted in (roughly) the same maximum engagement
angle for the MATHSM paths then we recorded the length of the shorter path.

This allowed us to compare our paths to the MATHSM paths such that all paths respect the same maximum
engagement angle θmax. In Fig. 5, sample paths are shown for θmax := 80. In all our figures of tool paths both
the maximum engagement angle and the tool size were chosen reasonably large for the sake of visual clarity;
we appreciate the fact that machining hard materials might make it necessary to use smaller values. In the
figures, the start chosen for the tool path is depicted by a red tool circle and a red cross; it would be suitable
for a spiral-down motion of the tool within a disk whose diameter matches roughly the tool diameter. (Since it
is application-dependent how the tool is immersed into the material at the start of a path, our implementation
picks the starting points of the paths with little attempt to be particularly smart.) Glancing at these three
paths makes it immediately apparent that the two paths generated by our approach are substantially shorter
than the (shortest) MATHSM path (shown in Fig. 5d) that respects the same value of θmax.

It is not surprising that a smaller maximum engagement angle results, in general, in a longer tool path. In
Fig. 6 we plot how the length of a tool path for the sample pocket (and tool size) shown in Fig. 5 depends
on the maximum engagement angle chosen. We see that the difference in the path lengths decreases if the
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(a) (b)

(c) (d)

Figure 5: Sample tool paths for θmax := 80 and the tool shown in the upper-left corners of the figures: The
path in (a) was generated by our standard algorithm, while (b) shows the contour-aware path. For a specific
point in time during machining, the (blue) contour of the area machined can be seen (c); the gray curve is
the “middle” curve between the medial axis and the pocket boundary that links the centers of the machining
circles. The path in (d) shows the result for our implementation of the original MATHSM algorithm. The
start is the same for all paths.

maximum engagement angle is increased. In particular, the greater θmax the less the difference in length
between our two variants of the tool path gets: Taking the area already machined into account hardly helps
to shorten the tool path for larger values of θmax. Of course, for θmax := 180 we get identical lengths for all
three paths since the same spacing of the machining centers can be used.

Figure 6 clearly shows that even for very large values of θmax < 180 the original MATHSM algorithm
generates paths that are longer than our paths. To probe this issue further we examined the distribution of the
engagement angles along the tool paths. Figure 7 plots the engagement angles for hundreds of consecutive
tool positions along the tool paths for our standard method and for the original MATHSM approach, for the
setting of Fig. 5. For every position (of the center) of the tool a color-coded point indicates the engagement
angle. No engagement angles were assessed during the spiral-down move within the white disk at the start
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Figure 6: Plot that shows the distribution of the path lengths relative to different engagement angles for the
pocket and tool size shown in Fig. 5. We use the labels “standard” for our standard algorithm, “contour” for
the improved contour-aware version, and “MATHSM” for the original MATHSM algorithm.

of the tool path. We admit that the color coding is not entirely reliable in the close neighborhood of the
edges of the medial axis due to multiple overlaps of the tool disk (which make it difficult to place the correctly
colored point “on top” in the plots). Still, the plots make it evident why the original MATHSM paths are
significantly longer than our paths: While our paths have engagement angles in the range 70◦ to 80◦ along
large portions of the cutting moves, the MATHSM path has angles mostly in the range 30◦ to 60◦. Only
around the start of the path and in the very left region and very right region of the pocket the angles reach
80◦. These regions enforce a small value for the spacing of the machining circles. As it can be seen, such a
small spacing constitutes a waste for most portions of the path, thus leading to an excessively long path.

The plots in Fig. 7 also help to shed light on the benefits of maintaining the contour of the machined area:
Compare the standard path in (a) to the contour-aware path in (b) within the cell in the first row (from bottom
to top) and sixth column (from left to right) of the dashed grid. We see that the engagement angles along
the contour-aware path quickly approach 80◦ as the tool moves away from the transition elements towards an
area already machined at the start of the tool path. For the same portions of the standard path the angles
remain mostly in the range 40◦ to 60◦. A similar difference can be spotted in the fifth column at the border
between the first and second rows. That is, taking the contour of the area already machined into account
allows to space some of the machining centers further apart and, thus, results in a shorter tool path. Indeed,
the path shown in Fig. 5b is about 3% shorter than the one in Fig. 5a. We note that maintaining that contour
has no disadvantage. Thus, while the savings (in general) are moderate, they come for free.

The run-time of a tool path computation based on our approach is small enough to allow its use in practice.
But, of course, it increases as θmax is decreased: The smaller θmax, the more machining circles have to be
generated, thus also resulting in more computations of the engagement angle. On a standard desktop PC
and for the setting shown in Fig. 5, our code (without I/O and computation of the Voronoi diagram) needs

Computer-Aided Design & Applications, 22(5), 2025, 731-747
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


744

 0

 10

 20

 30

 40

 50

 60

 70

 80

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

(c)

Figure 7: Plots that show the distribution of the engagement angles along the tool paths for our standard
method (a), for the contour-aware method (b), and for the original MATHSM approach (c). The pocket and
the tool size are the same as in Fig. 5.

about 100ms when θmax := 20, about 30ms for θmax := 40, and about 9ms for θmax := 80. Increasing θmax

even further causes the run-time to stay in the range 3ms to 6ms. The additional run-time consumed for
computing the Voronoi diagram is negligible: It is less than 1ms for the pocket geometry shown in Fig. 5.

Of course, the results obtained depend on the geometry of the pocket and on the size of the tool. For
instance, if the pocket is a simple circular disk then no difference in length will occur between our paths and
the MATHSM path if all paths respect the same value of θmax. (But recall that this would require trying lots
of distances to find the appropriate constant spacing of the machining centers for the MATHSM path by trial
and error.) On the other hand, just one convex arc with a small radius (relative to the tool radius) will cause
the MATHSM path to be longer.

Similarly, the reduction of the length of a tool path achieved by the contour-aware method depends on
how much overlap occurs during machining, which in turn depends on the geometry of the pocket and the
tool size. And it depends on the start of the tool path, too. We have seen reductions of up to 10% of the
length as well as truly marginal improvements. Furthermore, the length of a tool path may also depend on
how the tool happens to get to a “critical” region such as a convex arc with a small radius (relative to the
radius of the tool). At such regions of the pocket it is a matter of chance whether a few machining circles
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more or less are needed. (This also explains slight zigzagging in plots of the tool path length, e.g., for the
MATHSM paths in Fig. 6.)

Still, overall the results for other pockets, tool sizes and start points of the paths are similar to the results
presented for the setting of Fig. 5. Therefore we refrain from including detailed studies for other pockets, but
conclude this section with a few additional sample tool paths; see Fig. 8.

5 DISCUSSION AND CONCLUSION

Our generalization of the MATHSM algorithm allows us to generate tool paths such that a user-specified
maximum engagement angle θmax is not exceeded along the entire path. In particular, there is no need to
try different constants for the spacing of the machining centers to find such a path. As this angle is directly
related to the force acting on the tool, maintaining and controlling the maximum engagement angle can be
expected to increase the tool life and improve the surface quality. Furthermore, our adaptive spacing reduces
the length of the tool paths and, thus, cuts down the time spent on machining a pocket. Considering areas
that were already machined allows us to adaptively increase the spacing even further, thus resulting in yet
another shortening of the tool paths and savings in machining time.

The very nature of the MATHSM construction implies that no milling occurs along about half of the tool
path. One may want to save machining time by increasing the feedrate along these portions of the path.
Alternatively, one could shorten the tool path by replacing the non-cutting portions of the machining circles
with shorter primitives, e.g., with elliptic arcs. In that case our approach to controlling the engagement angle
would remain applicable because these non-cutting portions have no impact on the engagement angle. As a
matter of principle, also the cutting portions of the tool path could be replaced. However, then the underlying
mathematics would become more demanding since computing circle-circle and circle-line intersections would
no longer suffice for calculating the engagement angle.

Same as for the original MATHSM paths, it is trivial to convert a tool path computed by our algorithm
to C1 continuity by resorting to an arc-length parameterization of the path. And, of course, C2 continuity
could be achieved by approximating it by a sequence of higher-order primitives. While algorithms are known
for approximating curvilinear paths by cubic splines within prescribed tolerances [10], this raises a non-trivial
theoretical question: Suppose that the maximum engagement angle along a tool path T P is θmax. Given a
tolerance ε > 0, what is a suitable approximation threshold δ > 0 such that an approximation of T P by cubic
splines (or similar higher-order primitives) yields a new tool path T P ′ such that the maximum engagement
angle that occurs when moving along T P ′ is at most θmax+ε if T P and T P ′ are within a Hausdorff distance
of at most δ? Intuition tells us that any “reasonable” approximation of T P will result in a small ε if we just
pick δ small enough. But what is the precise mathematical relation between ε and δ for some specific type of
approximation?

Martin Held, https://orcid.org/0000-0003-0728-7545
Josef Pfeiffer, https://orcid.org/0009-0003-7865-782X
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Figure 8: Sample tool paths for θmax := 80 for another real-world pocket, crossed skis and a leaf of the plant
Monstera deliciosa. All paths are contour-aware, i.e., they take the already machined areas into account.
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