
805

Distance Field Generation by Proxies

Anna Lili Horváth1 , Gábor Valasek2 , Róbert Bán3

1Eötvös Loránd University, srirm5@inf.elte.hu
2Eötvös Loránd University, valasek@inf.elte.hu
3Eötvös Loránd University, rob.ban@inf.elte.hu

Corresponding author: Anna Lili Horváth, srirm5@inf.elte.hu

Abstract. Surfaces represented by distance functions can be rendered robustly and offer
efficient means to evaluate various spatial queries on them. However, constructing and
representing distance functions for general surfaces is a difficult problem. We propose a
general method for this task by extending geometric distance fields to 3D. Such fields are
grids of geometric proxies that have closed-form distance functions and approximate the
distance function of the original surface at a higher order than mere distance samples. We
show how first and second-order proxies can be constructed from parametric and signed
distance function inputs, as well as consider the generalization to arbitrary implicitly defined
surfaces.

Keywords: Signed distance function, Volume models, Ray casting
DOI: https://doi.org/10.14733/cadaps.2025.805-824

1 INTRODUCTION

The signed distance function (SDF) of an F ⊂ En geometry is an implicit function that maps the signed
distance of the argument to the closest boundary point of F . The sign determines whether the query position
is inside the volume or not. The SDF is a powerful representation of shapes, possessing all the flexibility of
general implicit functions [1], as well as encoding global geometric information about the scene, simplifying
tasks such as collision detection.

Despite its advantages, the exact SDF of a general complex scene cannot be expressed in closed-form. As
such, the evaluation of the distance is carried out either procedurally or via approximations in practice. The
former is usually reduced to a numerical distance minimization on the particular input representation while the
latter uses an approximation to the input itself and treats the problem as a function approximation task.

Although these algorithms can satisfy precision constraints and thus provide sufficiently accurate numerical
substitutions to the real distance, they have to interface with every geometric representation involved in the
problem. Consequently, the implementation of such algorithms is intertwined with the combinatorial complexity
of the modeling system.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://orcid.org/0009-0006-2956-9227
http://orcid.org/0000-0002-0007-8647
http://orcid.org/0000-0002-8266-7444
mainto:srirm5@inf.elte.hu
mainto:valasek@inf.elte.hu
mainto:rob.ban@inf.elte.hu
mailto:srirm5@inf.elte.hu
http://www.cad-journal.net

806

Figure 1: An outline of our presented method for constructing distance fields of general surfaces. First, we
acquire a set of sample points from the input geometry then we fit appropriately chosen geometric proxies
that have Gn connection to the original input, where n is the order of the field. Our approach takes samples
along the grid, thus a 3D texture can be utilized to store the data, which then can be decoded to a distance
approximation. In the example, we used a simple nearest sampling method. As we only ensure the necessary
approximation locally at the samples, in the last step we have to restrict our proxies to a small area using
geometric constraints.

Our paper proposes the use of geometric proxies that have Gn connection to the input geometry and
possess efficient signed distance queries. Due to the geometrically continuous connection with the original
geometry, their distance functions are local approximations to the original surface. This approach requires a
minimal number of coefficients for a given order of accuracy.

We propose a method to construct a field of proxies for general inputs and present specific algorithms for
parametric surfaces and SDFs. We also show that our approach ensures generality as the evaluation of the
data becomes independent from the complexity of the input. The outline of our proposed method can be seen
in Figure 1.

We overview the results of prior work in Section 2 and summarize the notational and theoretical background
in Section 3.

Our first result is presented in Section 4 where we show that the derivatives of the SDF at a point only
depend on the geometric invariants at the footpoint and the distance to the boundary. Based on this, Section
4 establishes a set of geometric primitives that we employ as first and second-order proxies in lieu of the input
geometry, and Section 5 shows how we build a geometric distance field. Methods for decoding the field are
presented in Section 6.

Our empirical results regarding accuracy are summarized in Section 7 and we summarize our findings in
Section 8.

2 PREVIOUS WORK

Our paper discusses a discrete, approximate signed distance field framework and we focus on previous work in
this area.

High-performance graphical applications utilize 2D and 3D distance fields for font rendering [7], collision
detection, and a variety of visual effects, including global illumination [15, 8]. Due to the demands of the
domain, efficient evaluation and the capability to utilize GPU hardware interpolation are of special interest
and this restricts the class of investigated representations. Usually, this simplifies to function sample values,
occasionally augmented by gradients.

However, it is possible to encode and query data that is of a geometric nature. Loop and Blinn[10]
proposed such a solution to rendering vector art composed of cubic Bézier segments. The SDF to the
boundary is approximated using a first order expansion which facilitates anti-aliased contour rendering. This

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

807

can be considered as an algebraic approximation to the SDF. In contrast, we utilize geometric proxies instead
of polynomial fits to SDF values.

Song et al. [11] showed that classic Hermite interpolation may be applied to the problem of approximating
the SDF. They showed that the derivatives of the SDF can be computed for both parametric boundary and
implicit volume representations. Our work extends this by carrying out Hermite interpolation in distance space
at the sample positions but relying on simple geometric proxies to do so. Moreover, our work is also compatible
with input representations that do not allow derivative interrogation. We propose a variant that fits cubic
algebraic polynomials to the input and uses the differential geometric invariants of the resulting approximations
to construct proxies.

This approach was presented for 2D shapes with SDF input in [2]. Our method is a generalization of the
method in 3D and for general input.

3 THEORETICAL BACKGROUND

Let En denote the n-dimensional Euclidean space and ∥.∥2 the Euclidean norm. The derivatives of f : En → R
are written as ∂1f, ∂2f, . . . , ∂nf , while single variable function derivatives are denoted by f ′.

An r ∈ R → En parametric curve is regular at t ∈ R if r′(t) ̸= 0. An r(u, v) : R2 → En surface
parametrization is regular at (u0, v0) ∈ R2 if its partial derivatives are linearly independent, i.e. ∂us(u0, v0)×
∂vs(u0, v0) ̸= 0.

The distance function f̂ : En → R of an F ⊂ En shape is defined as f̂(x) = d(x, ∂F), where d(x, ∂F) =
infy∈G ∥x − y∥2 and ∂F := F ∩ (En \ F) is the boundary of F . The signed distance function is defined as
f̂(x) = sgn(x) · d(x, ∂F) where

sgn(x) =

{
−1 if x ∈ F,

1 if x ̸∈ F.

The sign defines an inside-outside partitioning of the space.
We refer to all boundary points that realize the minimum distance as footpoints to x. We denote the set

of footpoints to x as P (x) = {y ∈ ∂F | ∥y − x∥2 = d(x, F)}.
The DF is continuous and its gradient is of unit length at regular points. The cut locus is the set of points

where the footpoint is not unique; the gradient of the DF is not defined at these points.
Two curves are Gn, n ≥ 1 at a common point x if there exists a regular reparametrization with respect to

which they are Cn at x. Similarly, two surfaces are Gn if there exists a regular reparametrization after which
the two surfaces are Cn. For the sake of practical considerations, we restrict our discussion to orientation
preserving reparametrizations.

The arc-length or natural parametrization of curves is such that the traversal of the curve is of unit
speed. We denote natural parametrization by hats, i.e. r̂ : [0, L] → En, where ∥r̂′∥2 ≡ 1. Every
regular parametrization of a curve can be written as an r = r̂ ◦ s : [a, b] → En composition where
s(t) =

∫ t

a
∥r′(x)∥2dx : [a, b] → [0, L], L = s(b) denoting the arc-length of the curve. Note that for reg-

ular parametrizations, s(t) is strictly monotonously increasing, thus it has an inverse s−1.
Similarly, we consider r(u, v) : [a, b]×[c, d] → E3 arbitrarily parametrized regular surfaces as reparametriza-

tions of natural surface parametrizations, i.e. r = r̂◦u. The r̂ : [0, L1]× [0, L2] → En natural parametrization
is defined such that the parameter lines are lines of curvatures traversed at unit speed.

The Frenet-Serret formulas quantify how the derivatives of an arc-length parameterized curve depend
on the geometric invariants and only those, i.e. the curvature and torsion functions. The above natural
parametrization of surfaces possesses a similar property. In particular, all of its mixed partial derivatives vanish
(see Lemma 16 in [12]). As such, all partial derivatives of r̂(s, t) depend on the geometric invariants of the
lines of curvatures and only on those.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

808

4 HIGHER ORDER DISTANCE FUNCTION RECONSTRUCTION

Our goal is to interpolate the SDF and its derivatives up to order n at an arbitrary point. Let us first show that
geometric Hermite interpolation of order n results in an order n SDF reconstruction. Once that is established,
we focus on shapes that are practical in the sense that the evaluation of their SDF is inexpensive.

In the case of parametric curves, let t : En → P(R) denote the foot-parameter mapping that assigns the
parameter of the closest points on the curve to the query position, as shown in [13]. Since the SDF is only
differentiable where |t(x)| = 1, we can assume that t is a real-valued function at the point of interest. Then
the SDF, up to sign, is written as f̂ = ∥r ◦ t− id∥2, where id is the identity mapping, i.e. id(x) = x.

Let us write the r : [a, b] → En arbitrarily parametrized regular curve as the composition of its arc-length
parametrization and the s : [a, b] → [0, L] arc-length function: r = r̂ ◦ s. Then the unsigned DF is

f̂ = ∥r ◦ t− id∥2 = ∥(r̂ ◦ s) ◦ (s−1 ◦ t̂)− id∥2 = ∥r̂ ◦ t̂− id∥2 , (1)

where t̂ : En → [0, L] is the footparameter mapping on the arc-length parametrization.
Similarly, the SDF of a regular parametric surface can be written using the footparameter mapping and

its inverse. Discarding the sign again, the distance function is expressed as f̂ = ∥r ◦ t − id∥2, where
t : En → P(R2) is the surface footparameter mapping. Wherever the SDF is differentiable, this is further
developed as

f̂ = ∥(r̂ ◦ u) ◦ (u−1 ◦ t̂)− id∥2 = ∥r̂ ◦ t̂− id∥2 (2)

where r = r̂◦u, with u : R2 → R2 being the regular reparametrization of the surface from natural parametriza-
tion, and t̂ is the footparameter mapping on the natural parametrization.

These prove that the n-th derivative of the SDF only depends on the distance between the query position
and boundary and the natural parametrization of the shape. Quantitatively, the latter is equivalent to the
geometric invariants, such as normal vectors, principal curvatures, etc., at the footpoint up to order n. This
implies that Gn continuous surfaces possess Cn continuous connection of their signed distance fields.

As a consequence, curves and surfaces with the proper continuity properties can be used to approximate
the SDF instead of polynomials. This means that we can use any geometry that is Gn continuously connected
at the footpoint. Besides this, we have the following expectations towards the proxies: (i) the SDF of the
proxy should be efficient to evaluate and (ii) the proxy should have a low memory cost.

In three-dimensions, the simplest G1 surface is the tangent plane at the footpoint, which can be defined
by one of its points and its normal vector. In our case, we can use the P (xi) footpoint itself, and the
corresponding normal vector to describe the proxy. Taking into consideration that, by definition, the normal at
the footpoint is parallel to the vector from the footpoint to the xi query point, the geometry can be described
with three scalar values: the displacement vector P (xi)− xi.

For the G2 geometric proxy, we have to use a shape that is able to represent the principal curvatures and
directions of the surface. A geometry that is suitable for this is the torus as it is able to store any combination
of curvatures as shown in Figure 2. If the torus is defined by its center, axes, and two radii as shown in Figure
3 the SDF can be obtained with a simple formula, as presented in [3].

However, this representation cannot represent the degenerate cases of cylinders and planes conveniently,
where one or two of the curvatures is zero. Thus, we represent the torus by the footpoint, the principal
curvatures, and the axis, see Figure 4.

It is important to note that we assume that our footpoint is either on the inner or outer circle of the torus,
as highlighted in Figure 2. This way the torus will be uniquely defined, while without this assumption there
would be multiple tori approximating the surface making the evaluation difficult. It can also be seen that for
any curvature configuration, there exists a torus thet connects to the surface in one of the said points and
approximates in order 2.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

809

Figure 2: Classification of the points of the torus according to curvature configurations, κ = κ1 · κ2 is the
product of the two principal curvatures.

The sign of the curvatures will be given in relation to the surface normal, thus when decoding the field it
is necessary to know this vector. It is either parallel to the P (xi)− xi vector or the opposite of it, therefore
we need an additional bit, representing the values of 1 or −1 encoding the direction.

As such, the torus can be stored with 9 scalar values on the computer. In particular, the footpoint P (xi),
the two principal curvatures κr ∈ R and κR ∈ R, one of the principal axes t ∈ R3 and the orientation of the
correct surface normal s ∈ {1,−1}. This can be reduced to 8 scalars by encoding s in the length of t, then it
has to be decoded when reading the field.

5 FIELD GENERATION

In the previous section, we discussed how to construct geometric proxies that approximate the SDF of a shape
up to the second order at regular points, i.e. where the footpoint is unique. Let us now investigate how to
construct a globally defined approximation from these one-point proxies that retain the order of accuracy of
the individual geometries.

In general, the proxies may have an arbitrary topology. Here, the scattered data interpolation toolbox [4]
offers a variety of tools to extract a globally defined function from the samples. The proxies may be generated
by sampling the input geometry, e.g. on a regular grid in the parameter space of parametric surfaces, then
combined based on proximity to the query position. The simplest such approach is to take the distance from
the closest proxy.

This method makes the generation of the field simple and provides an approximation with fewer proxies.
However, as shown in the previous section, the order n approximation is ensured only locally, meaning that
we will get the desired approximation order only in query points where the footpoint is close to the samples
taken. Such an unstructured set of samples requires careful acceleration efforts to provide high performance.

For this reason, we choose the approach of using a 3D grid of proxies. We defined a set of sample points on
a grid and approximated the distance function at them. While this approach can make the proxies redundant,
the evaluation of the field becomes simple as we can find the closest sample fast.

Specifically, we define our field as a three dimensional texture with a given physical extent and texel

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

810

Figure 3: Defining parameters of the general torus representation. The torus is described by its c center, r
and R radii and t axis.

Figure 4: Defining parameters of the footpoint representation chosen such that both cylinders and planes are
stored efficiently. The torus is described by a p surface point, the κr and κR principal curvatures at that point
and the t axis.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

811

Figure 5: An example of the geometric Newton-Rhapson method in 2D. We are looking for the closest point
to x and our initial guess is p0. The figure shows two iterations of the method. We approximate the curve
with lines and take a closest point from them (q1, q2), then calculate the step in the original parameter space
obtaining a better approximation of the closest point (p1,p2).

resolution. For every cell of the grid, we take the center as our xi sample position and find the corresponding
footpoint from the surface where we fit the proxy.

For any representation on which closest point query and differential geometric invariant data evaluation is
possible, the following general algorithm can be used to generate proxies. For each cell of the 3D field grid:

1. find one of the closest surface points to the center of the cell

2. calculate the necessary differential geometric invariants at the footpoint and get the defining qualities
of the proxy geometry

In certain cases, evaluating the curvatures or gradients may be infeasible or computationally too expensive.
In what follows, we demonstrate how we address this and the closest point search for parametric and implicitly
defined surface inputs.

5.1 Parametric Surface Input

Given a parametric surface s : R2 → E3, we can find the footpoint p = P (x) to x ∈ E3 by solving for the
(u, v) parameter pair that minimizes the distance from s(u, v) to x. For example, this can be done by using
the geometric Newton-Rhapson method [9]. An outline of the method in 2D can be seen in Figure 5. The 3D
version follows a similar approach but utilizes the tangent plane instead. A crucial problem is the initial guess
as the iteration needs a starting point that is close to the exact result to converge. We took a regular grid in
the parameter space of the surface and chose the closest of the grid points to our query point as the starting
point of the iterations.

Once the closest point and its (u, v) parameters have been determined, we proceed to the geometric
invariant computation. For the tangent plane proxy, we can take the displacement vector as d = P (x)− x.

For the second-order proxy, we have to calculate the derivatives (∂us, ∂vs) and get the normal as their
cross product n = ∂us×∂vs

∥∂us×∂vs∥2
. The s sign we can set to 1 or −1 based on whether n is pointing in the same

direction as d.
After this, we can get the principal curvature values with the following formulas, where κ1, κ2 are the

curvature values needed. The first fundamental form is expressed using

E = ∂us · ∂us, F = ∂us · ∂vs, G = ∂vs · ∂vs, (3)

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

812

and the second is
L = ∂uus · n, M = ∂uvs · n, N = ∂vvs · n . (4)

The principal curvatures are then

κ1, κ2 = h±
√

h2 − g

where the Gauss and mean curvatures are

g =
L ·M− N2

E ·G− F2

h =
L ·G− 2 ·M · F+ N · E

2 · (E ·G− F2)
.

Since we assumed that the footpoint is on the inner or outer arc of the torus, its axis should be the direction
of the bigger curvature.

The axis is obtained from its tangent

λ = −M− κ · F
N− κ ·G

,

where κ is the larger curvature value.

5.2 SDF Input

For an f̂ ∈ E3 → R SDF, the footpoint can be obtained from the gradient at our query point x ∈ E3 and the
distance value as P (x) = x−∇f̂(x) · f̂(x)

For the first-order case, the displacement vector is given by −f̂(x)∇f̂(x). The normal is parallel to the
gradient at the footpoint, thus it can be written as n = ∇f̂(P (x))

∥∇f̂(P (x))∥2
, and the s can be obtained as presented

previously.
For second-order fields, the curvature values can be computed analytically as described in [6]. However,

for a more general setting, we obtain the curvatures for an approximate surface at the footpoint. This only
imposes value-evaluation constraints on the input, simplifying the integration of our method.

We take samples around the footpoint by taking a small grid on the tangent plane and projecting its gij
points on the surface. We took two options into consideration

• taking the P (gij) footpoints to each

• projecting the points orthogonally on the surface

Upon comparing the two methods, it became evident that the second approach provides a superior ap-
proximation. This observation is illustrated in Figure 6, where the selection based on the footpoint yields a
degenerate result, whereas the orthogonal projection produces a smoother outcome. Consequently, we choose
the orthogonal projection method as presented in Figure 7. which gives evenly spread samples ensuring a
smooth approximation.

After constructing this set of pij surface points, we convert the points to a local coordinate system defined
by the footpoint as the origin, an (b1, b2) arbitrary base of the tangent plane and the n normal as the base
vectors.

We can fit an algebraic surface to these grid points, as demonstrated in [5]. It is important to emphasize
that when employing orthogonal projection, the local x and y coordinates of the pij points will align with the
local coordinates of the points on the tangent grid. Consequently, in the local base, only the z coordinates
may differ for different sample points.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

813

(a) All footpoints will be the same, the fitting
of the torus will be numerically unstable

(b) With orthogonal projection we get an approx-
imate result

Figure 6: An example for the difference between getting surface points by finding the footpoints and projecting
orthogonally

Figure 7: We approximate the surface around the footpoint by taking a set of surface points. We obtain these
points by taking a small grid on the tangent plane at the footpoint and projecting its points orthogonally on
the surface.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

814

This converts the surface fitting into a linear system of equations, for which the Moore-Penrose pseudoin-
verse gives an optimal least square approximation. As our points form a grid with a fixed size and resolution,
all the necessary data can be calculated as a preprocessing step prior to the fitting, making the algorithm easy
to parallelize.

We can calculate the Weingarten matrix of the surface from the obtained coefficients as presented in [5].
An important quality of this matrix is that its eigenvalues correspond to the principal curvatures of the surface
and the eigenvectors are the principal directions.

Thus we obtained the κr, κR curvature values and the axis can again be chosen as the direction of κr.
We also considered general implicit surfaces which are the generalization of SDFs, therefore the algorithm

for obtaining the proxy geometries can be used in the same way. However, finding the footpoint is a more
difficult problem.

We used the Newton method, but this algorithm only converges if our initial guess is close enough to the
real footpoint. In our implementation, we initialized the guess by taking steps in the opposite direction of the
gradient from our query point and started the iteration from different points.

6 DECODING THE FIELD

Once the geometric distance field is computed, our method becomes agnostic to the original input represen-
tation. All subsequent computations are carried out on the grid of proxies.

The field is stored in a 3D texture. When reading the field, we take the data from the encapsulating sample
cell of our query point and calculate the distance function. Since the data stored at samples is not defined in
the same global coordinate system, we cannot rely on hardware-accelerated trilinear filtering, we have to carry
out this task manually. First, this requires us to evaluate the distance to a single proxy.

For the plane, we can use a general distance function. We can read the displacement vector d from the
field, which is parallel to the normal at the footpoint thus n = d

∥d∥2
. The footpoint can be calculated from

the xi center position of the sample cell as p = xi + d. With this the distance of x from the plane is

dplane = (x− p) · n .

.
For the second-order field, we can use a closed-form formula to calculate the distance from the torus as

presented in [3]. To do so, we have to convert from our footpoint-based representation of the torus to the
one used in the formula.

If both κr = 0 and κR = 0, the geometry is a plane. In this case, we need the footpoint, which is explicitly
stored, and the normal at the footpoint, which we can calculate from the footpoint and the center position of
the query texel (xi) augmented with the sign s as

n = s · p− xi

∥p− xi∥2
. (5)

After calculating this, we can use the SDF of the plane as written previously.
When κR = 0, i.e. the footpoint is a parabolic point, the proxy geometry is an infinite cylinder. The

SDF of the cylinder can be calculated from a c point on the axis two vectors perpendicular to the axis (n the
original surface normal and t the direction of κr are such) and the radius (r),

dcylinder =

∥∥∥∥∥
[
⟨p − c,n⟩
⟨p − c, t⟩

]∥∥∥∥∥
2

− r . (6)

Here, r = 1
|κr| and we can get c with Equation (7) depending on whether the cylinder osculates the surfaces

from the inside or outside. The two cases can be seen in Figure 8.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

815

(a) κr > 0, the cylinder touches the surface from the
outside

(b) κr < 0, the cylinder touches the surface from the
inside

Figure 8: Calculating the axis point of the cylinder. Based on the sign of κr we have to step in the direction
of n or in the opposite direction

c =

{
p+ r · n, if κr > 0

p− r · n, if κr < 0
(7)

When both κr ̸= 0 and κR ̸= 0 the geometry stored is a torus. For the simple SDF discussed previously
we need to obtain the t axis, the c center and, the two r,R radii.

As discussed before, the sign of the curvatures is given in relation to the original surface normal at the
footpoint, which is not necessarily the normal of the torus, see examples in Figure 9 (c) and (d). The correct
normal can be calculated from the footpoint and the query texel center with the s sign as shown in 5.

The axis is already given, and r = 1
κr

. Let R′ = 1
|κR| be the radius of the circle on which the footpoint is.

This is not the radius R, but we know that |R−R′| = r. If the footpoint is an elliptic point then R < R′, if
it is a hyperbolic point then R′ < R, thus

R =

{
1

|κR| + r, if κr · κR < 0
1

|κR| − r, if κr · κR > 0
. (8)

The position of c can be calculated from fp and R′, depending on the sign of the curvatures:

c =

{
fp + n · 1

|κR| , if κR > 0

fp − n · 1
|κR| , if κR < 0

. (9)

The different orientations of the torus and the surface can be seen in Figure 9.
After decoding the field we can calculate the unsigned distance from the proxy by taking the absolute value

of the distance function. This change is needed because the input surface does not necessarily have an inside
outside partitioning, and even when it does possess one the proxy is not always touching the surface from the
inside, see Figure 9 (c) and (d).

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

816

(a) κr < 0, κR < 0 (b) κr < 0, κR > 0

(c) κr > 0, κR < 0 (d) κr > 0, κR > 0

Figure 9: The orientation of the torus and the surface (in yellow). The relationship between R′ = 1
κR

and R
is described by the sign of κR.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

817

(a) An example of error with unconstrained proxies (b) The corrected image with the
constrained geometries.

Figure 10: An example of error, when we do not constrain our geometries. The approximation is only relevant
around the footpoint, thus in query points far from the original shape we can get incorrect distance values,
causing the floating artifacts. We constrained the geometries with a sphere around the footpoint.

Concluding these results, the correct unsigned distance based on the curvatures is

d =

|dplane|, if κr = 0 and κR = 0

|dcylinder|, if κR = 0 and κr ̸= 0

|dtorusz|, if κr ̸= 0 and κR ̸= 0

. (10)

An important consideration is that we approximate the surface only in a localized patch around the
footpoint, therefore the proxies may give incorrect distances for points far away from the footpoint, causing
errors as shown in Figure 10. This necessitates a constraint on the geometry to a smaller area. A straightforward
approach that we used, is to limit geometries to the intersection of the surface and a sphere, with the radius
of the sphere chosen appropriately.

In our implementation, our heuristic choice was to set the radius of the intersecting sphere as the size of a
cell of the field. This decision was proven to be efficient in practice after comparing with other possible radius
values, e. g. small constant numbers or multiples of the cell size.

For smoother connection between the proxies, we can use trilinear interpolation. To do this we calculate
the distances to the proxies in the 8 closest texels and interpolate the distance values. This approach, however,
does not respect the derivatives even at the footpoint. Therefore, we can use a Hermite interpolation method
instead as shown in [14].

Using the blending functions h3(t) = −2t3 + 3t2 for first-order data and h5(t) = 6t5 − 15t4 + 10t3 for
second-order data instead of the general trilinear weights on the distances from the 8 geometries the derivative
will be reconstructed correctly.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

818

Sphere - Order 1 field

Res. Norm
Parametric SDF Implicit

nearest cubic Hermite nearest cubic Hermite nearest cubic Hermite

163
1 0.0019 0.003 0.0017 0.0032 0.0017 0.0027

2 0.0000093 0.000015 0.000001 0.000001 0.0000062 0.000012

∞ 0.069 0.044 0.05 0.032 0.062 0.043

323
1 0.0005 0.0008 0.0008 0.0013 0.00033 0.00053

2 0.0000022 0.000013 0 0 0.00000026 0.00000052

∞ 0.033 0.29 0.029 0.02 0.029 0.021

Sphere - Order 2 field

Res. Norm
Parametric SDF Implicit

nearest quintic Hermite nearest quintic Hermite nearest quintic Hermite

163
1 0.00000016 0.0000001 0.0000073 0.000057 0.00000032 0.0000006

2 0.00000000091 0.00000000000028 0 0 0.0000000000004 0.00000000000056

∞ 0.02 0.000012 0.00031 0.0021 0.00021 0.0002

323
1 0.0000017 0.00012 0.000068 0.000049 0.00000015 0.00000019

2 0.0000000027 0.000014 0 0 0 0

∞ 0.0033 0.29 0.00034 0.0035 0.00021 0.00013

7 RESULTS

The precision of our method was tested in various 3D environments. We evaluated the exact distance on a
grid of resolution 2173 and used it as a ground truth. During testing, we evaluated geometric fields of various
resolutions on the same grid. Then we took the difference as the error. We compared error vectors using the
average ∥ · ∥1, ∥ · ∥2, and ∥ · ∥∞ norms. Our fields were stored in 16-bit float textures.

We evaluated our method on basic shapes that are common in CAGD and also possess parametric and
distance formulations. Our test shapes are shown on Figure 11.

These results show that our algorithm for parametric surfaces and SDFs has a similarly good precision
while on more complex shapes, the implicit surfaces perform poorly in comparison.

This can be attributed to large errors in the footpoint caused by the Newton method as it needs an initial
guess close to the expected result to converge to the exact footpoint. However, for implicit surfaces, finding
a point close to the real footpoint and ensuring the stability of the method is a difficult problem, which we
can not address in this work. From the test it seems that our approach to constructing the field is correct,
highlighted by the precision of the sphere, however the convergence of numerical optimization algorithms is
beyond the scope of this paper, therefore making the method work for general implicit surfaces is an area of
future research.

We conducted further measurements for parametric surfaces and SDF input to test their individual behavior
on different shapes.

For parametric surfaces, we tested our method on a cone geometry, illustrated in Figure 11 (c),on random
Bézier surfaces and on piece-wise polynomials consisting of multiple connected Bézier patches. Examples are
shown in Figure 11 (d) and (e). As we do not have exact SDFs, we calculated our ground truth with the
Newton-Rhapson method, and then used the same approach described above. The results can be seen in
Table 2.

For SDFs, we conducted tests on shapes with small details and scenes combined with CSG operations from

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

819

(a) Sphere (b) Torus (c) Cone

(d) Random Bézier surface (e) Piece-wise polynomial (f) Spike

(g) Scene 1 (h) Scene 2

Figure 11: The 3D shapes used for testing. (a) and (b) was used for general comparison and performance
tests, (c) and (d) for testing the method on parametric input, and (e) and (f) for SDF input

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

820

Torus - Order 1 field

Res. Norm
Parametric SDF Implicit

nearest cubic Hermite nearest cubic Hermite nearest cubic Hermite

163
1 0.15 0.16 0.002 0.0035 0.31 0.31

2 0.036 0.35 0.000001 0.000001 0.13 0.13

∞ 0.31 0.31 0.068 0.032 0.73 0.72

323
1 0.05 0.04 0.00069 0.0011 0.24 0.28

2 0.0039 0.0025 0 0 0.075 0.099

∞ 0.19 0.11 0.037 0.017 0.61 0.67

Torus - Order 2 field

Res. Norm
Parametric SDF Implicit

nearest quintic Hermite nearest quintic Hermite nearest quintic Hermite

163
1 0.00033 0.00045 0.00031 0.00033 0.26 0.26

2 0.0000004 0.0000033 0 0 0.093 0.091

∞ 0.11 0.057 0.028 0.019 0.68 0.79

323
1 0.00023 0.00024 0.00023 0.00022 0.27 0.27

2 0.000001 0.00001 0 0 0.095 0.096

∞ 0.11 0.36 0.0061 0.0041 0.7 0.83

Table 1: Accuracy measurements of the fields generated from different inputs, on given resolution with
different filtering methods.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

821

Cone

Res. Norm
G1 G2

nearest cubic H. nearest quintic H.

163
1 0.00089 0.0013 0.00055 0.00052

2 0.0000039 0.0000055 0.0000012 0.0000011

∞ 0.085 0.087 0.082 0.08

323
1 0.00036 0.00033 0.00049 0.00046

2 0.00000099 0.000001 0.000001 0.000001

∞ 0.092 0.092 0.092 0.093

643
1 0.00037 0.00034 0.00045 0.00043

2 0.00000077 0.00000089 0.0000011 0.0000011

∞ 0.073 0.11 0.11 0.1

Random Bézier surface

Res. Norm
G1 G2

nearest cubic H. nearest quintic H.

163
1 0.031 0.065 0.039 0.042

2 0.0028 0.014 0.004 0.015

∞ 0.18 0.54 0.18 0.67

323
1 0.02 0.063 0.023 0.044

2 0.0011 0.015 0.0013 0.015

∞ 0.14 0.51 0.14 0.67

643
1 0.012 0.064 0.017 0.044

2 0.00037 0.015 0.00071 0.016

∞ 0.11 0.52 0.12 0.67

Piece-wise polynomial (6 patches)

Res. Norm
G1 G2

nearest cubic H. nearest quintic H.

163
1 0.028 0.055 0.044 0.059

2 0.0021 0.0097 0.005 0.0089

∞ 0.11 0.33 0.13 0.17

323
1 0.022 0.043 0.028 0.041

2 0.0014 0.0057 0.0021 0.0042

∞ 0.084 0.17 0.082 0.11

Table 2: Accuracy measurements of the field generated for parametric Bézier surfaces. The table shows the
results with nearest sampling and blended Hermite interpolation.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

822

Spike

Res. Norm
G1 G2

nearest cubic H. nearest quintic H.

163
1 0.0083 0.011 0.0048 0.0059

2 0.000006 0.000005 0.000005 0.000004

∞ 0.29 0.29 0.29 0.28

323
1 0.0022 0.0034 0.0017 0.002

2 0.000002 0.000002 0.000002 0.000002

∞ 0.29 0.29 0.29 0.29

643
1 0.00071 0.001 0.00097 0.001

2 0.000001 0.000001 0.000001 0.000001

∞ 0.29 0.28 0.29 0.28

Scene 1

Res. Norm
G1 G2

nearest cubic H. nearest quintic H.

163
1 0.003 0.0042 0.0027 0.0028

2 0.000003 0.000002 0.000004 0.000003

∞ 0.27 0.25 0.27 0.27

323
1 0.001 0.0015 0.0013 0.0012

2 0.000001 0.000001 0.000002 0.000002

∞ 0.27 0.26 0.27 0.27

643
1 0.00056 0.00067 0.00065 0.00063

2 0.000001 0.000001 0.000001 0.000001

∞ 0.25 0.25 0.25 0.25

Scene 2

Res. Norm
G1 G2

nearest cubic H. nearest quintic H.

163
1 0.0039 0.0047 0.0085 0.0082

2 0.000004 0.000003 0.000009 0.000007

∞ 0.38 0.26 0.29 0.25

323
1 0.0016 0.0018 0.0038 0.0036

2 0.000002 0.000002 0.000004 0.000004

∞ 0.25 0.2 0.25 0.21

643
1 0.001 0.001 0.0035 0.0033

2 0.000001 0.000001 0.000003 0.000001

∞ 0.24 0.22 0.24 0.23

Table 3: Accuracy measurements of the field generated for SDFs. The table shows the results with nearest
sampling and blended Hermite interpolation.

simple shapes as shown on Figure 11 (f), (g) and (h). The results are presented in Table 3.
From these, we can conclude that the fields have good precision even on small resolutions without any

filtering. For more difficult shapes, the first-order field offers better accuracy than the second-order or is around
the same precision. This can be attributed to the first-order field being more robust, while the second-order
field can be more dependent on the errors of the input. In the case of the SDF input, it is also affected by the
size and orientation of the small grid taken when approximating the surface around the footpoint.

The data also shows that the maximum error does not significantly decrease with bigger resolution, fur-
thermore, we can see big maximum errors even when the average and second norm are small. This can be
caused by small errors in the footpoint, as the proxies are very sensitive to the footpoint position and even
small inaccuracies can cause discontinuities and incorrect proxies.

To further validate this we conducted measurements, where we took a sphere for which we can calculate
the footpoint with high accuracy. After finding the footpoints we took one of them and added a small noise
by hand, then continued the proxy calculation as usual. This produced the same result when compared to the
field generated with correct footpoints: while the average error remained minimal there was a large increase

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

823

Res. Parametric SDF Implicit

16 0.06 ms 0.03 ms 0.01 ms

32 0.20 ms 0.07 ms 0.05 ms

64 1.33 ms 0.39 ms 0.32 ms

Res. Nearest Hermite

16 0.68 ms 3.12 ms

32 0.75 ms 3.19 ms

64 0.80 ms 3.39 ms

Table 4: The time of generating (left) and evaluating (right) fields.

in the maximum. When the error vector added to the footpoint had a length of 0.01 the maximum became 4
times bigger. This shows that the footpoint inaccuracies play a significant role in this phenomenon.

Lastly from the measurements, it is clear that the trilinear interpolation does not fit this approach. The
interpolation is conducted on the distance values thus we lose a lot of geometrical data. For this reason, we
are working on a filtering technique that respects the properties of the geometries.

We also conducted performance tests. When measuring the time of field generation, we used the shapes
from Figure 11 (a) and (b) for comparison between the inputs on different resolutions. The result was the
average performance on the different shapes as shown in the left part of Table 4. The test was conducted on
NVIDIA GTX 1650 laptop GPU.

For testing the performance of the evaluation, we rendered the fields using a sphere tracing algorithm. Here,
we did not need to differentiate between the different input geometry types and, the results were calculated
as the average of the performance on different shapes. Our results are shown in the right part of Table 4.

The performance tests show that the field generation of the parametric surfaces is a bit slower, this can
be attributed to needing to calculate an initial guess for the geometric Newton-Rhapson method.

8 CONCLUSION

In summary, we presented a novel method to approximate the signed distance function (SDF) of general
surfaces with a small number of scalars.

We showed that approximation is possible up to a given order with appropriately defined proxy geometries.
We described our reasoning for the specific proxies chosen and showed an algorithm for obtaining them for
different inputs.

We introduced how to decode the fields and gave examples of filtering methods that reconstruct the SDF
derivatives.

Our results show that geometric fields provide high accuracy even on small resolution, at a good perfor-
mance. From our tests, it is clear that in general, the first-order field provides small average errors even on
complex surfaces. The second-order field demonstrated its utility with more general curved surfaces and lower
resolutions. However, compared to the G1 field, its approximation accuracy is lower, primarily due to potential
numerical errors introduced during field construction. Future work could focus on developing a more robust
field-generating method to enhance its applicability for general use.

Another area of further research is to improve the stability and precision of the footpoint finding methods
to extend the concept for general implicit surfaces and reduce error for the other inputs as we showed that a
part of the errors can be attributed to inaccuracies of the footpoint.

Lastly, to find a filtering technique that fits the concept of the geometric fields we plan on constructing
a filtering method that combines multiple proxy geometries while keeping the geometric interpretation of the
field.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

824

ACKNOWLEDGEMENTS

Supported by the ÚNKP-23-2 and ÚNKP-23-4 New National Excellence Program of the Ministry for Culture
and Innovation from the National Research, Development and Innovation Fund.

Anna Lili Horváth, https://orcid.org/0009-0006-2956-9227
Gábor Valasek, https://orcid.org/0000-0002-0007-8647
Róbert Bán, https://orcid.org/0000-0002-8266-7444

REFERENCES

[1] Bajaj, C.; Blinn, J.; Cani, M.P.; Rockwood, A.; Wyvill, B.; Wyvill, G.: Introduction to Implicit Surfaces.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997. ISBN 1-55860-233-X.

[2] Bán, R.; Valasek, G.: First Order Signed Distance Fields. In A. Wilkie; F. Banterle, eds., Eurographics
2020 - Short Papers. The Eurographics Association, 2020. ISBN 978-3-03868-101-4. ISSN 1017-4656.
http://doi.org/10.2312/egs.20201011.

[3] Eberly, D.: Fitting 3d data with a torus, 2020. https://www.geometrictools.com/Documentation/
TorusFitting.pdf. Accessed: 2023-05-13.

[4] Franke, R.; Nielson, G.M.: Scattered data interpolation and applications: A tutorial and survey. In
H. Hagen; D. Roller, eds., Geometric Modeling, 131–160. Springer Berlin Heidelberg, Berlin, Heidelberg,
1991. ISBN 978-3-642-76404-2.

[5] Goldfeather, J.; Interrante, V.: A novel cubic-order algorithm for approximating principal direction vectors.
ACM Trans. Graph., 23(1), 45–63, 2004. ISSN 0730-0301. http://doi.org/10.1145/966131.966134.

[6] Goldman, R.: Curvature formulas for implicit curves and surfaces. Computer Aided Geometric Design,
22(7), 632–658, 2005. ISSN 0167-8396. http://doi.org/https://doi.org/10.1016/j.cagd.2005.
06.005. Geometric Modelling and Differential Geometry.

[7] Green, C.: Improved alpha-tested magnification for vector textures and special effects. In ACM SIG-
GRAPH 2007 Courses, SIGGRAPH ’07, 9–18. ACM, New York, NY, USA, 2007. ISBN 978-1-4503-1823-5.
http://doi.org/10.1145/1281500.1281665.

[8] Hu, J.; Yip, M.K.; Alonso, G.E.; Gu, S.; Tang, X.; Jin, X.: Efficient real-time dynamic diffuse global
illumination using signed distance fields. Vis. Comput., 37(9–11), 2539–2551, 2021. ISSN 0178-2789.
http://doi.org/10.1007/s00371-021-02197-0.

[9] Kallay, M.: A geometric Newton–Raphson strategy. Computer Aided Geometric Design, 18(8), 797–803,
2001. ISSN 0167-8396. http://doi.org/https://doi.org/10.1016/S0167-8396(01)00070-X.

[10] Loop, C.; Blinn, J.: Rendering Vector Art on the GPU, chap. 25. Addison-Wesley Professional, 2007.
https://developer.nvidia.com/gpugems/gpugems3/contributors.

[11] Song, X.; Jüttler, B.; Poteaux, A.: Hierarchical Spline Approximation of the Signed Distance Function.
In 2010 Shape Modeling International Conference, 241–245. IEEE, Aix-en-Provence, France, 2010. ISBN
978-1-4244-7259-8. http://doi.org/10.1109/SMI.2010.18.

[12] Valasek, G.: Nonlinear Geometric Models. Ph.D. thesis, Eötvös Loránd University, 2016. http://doi.
org/10.15476/ELTE.2015.123.

[13] Valasek, G.; Bálint, C.; Leitereg, A.: Footvector representation of curves and surfaces. Acta Cybernetica,
25(2), 555–573, 2021.

[14] Valasek, G.; Bán, R.: Higher Order Algebraic Signed Distance Fields. Computer-Aided Design and Ap-
plications, 1005–1028, 2023. ISSN 16864360. http://doi.org/10.14733/cadaps.2023.1005-1028.

[15] Wright, D.: Dynamic occlusion with signed distance fields. In Advances in Real-Time Rendering in Games.
Epic Games (Unreal Engine), SIGGRAPH, 2015.

Computer-Aided Design & Applications, 22(5), 2025, 805-824
© 2025 U-turn Press LLC, http://www.cad-journal.net

https://orcid.org/0009-0006-2956-9227
https://orcid.org/0000-0002-0007-8647
https://orcid.org/0000-0002-8266-7444
http://doi.org/10.2312/egs.20201011
https://www.geometrictools.com/Documentation/TorusFitting.pdf
https://www.geometrictools.com/Documentation/TorusFitting.pdf
http://doi.org/10.1145/966131.966134
http://doi.org/https://doi.org/10.1016/j.cagd.2005.06.005
http://doi.org/https://doi.org/10.1016/j.cagd.2005.06.005
http://doi.org/10.1145/1281500.1281665
http://doi.org/10.1007/s00371-021-02197-0
http://doi.org/https://doi.org/10.1016/S0167-8396(01)00070-X
https://developer.nvidia.com/gpugems/gpugems3/contributors
http://doi.org/10.1109/SMI.2010.18
http://doi.org/10.15476/ELTE.2015.123
http://doi.org/10.15476/ELTE.2015.123
http://doi.org/10.14733/cadaps.2023.1005-1028
http://www.cad-journal.net

	INTRODUCTION
	PREVIOUS WORK
	THEORETICAL BACKGROUND
	HIGHER ORDER DISTANCE FUNCTION RECONSTRUCTION
	FIELD GENERATION
	Parametric Surface Input
	SDF Input

	DECODING THE FIELD
	RESULTS
	CONCLUSION

