
845

Voxel-Based Collision Avoidance for 5-Axis Additive Manufacturing

Alexandre Desgrees du Lou1 , Yeganeh Bahoo2 , Robert Hedrick3 , Austin Vuong2

1IMT Mines Albi, alexandre.desgrees_du_lou@mines-albi.fr
2Toronto Metropolitan University, {bahoo,austin.vuong}@torontomu.ca

3CAMufacturing Solutions Inc., bob.hedrick@camufacturing.com

Corresponding author: Alexandre Desgrees du Lou, alexandre.desgrees_du_lou@mines-albi.fr

Abstract. This paper introduces two innovative algorithms designed to convert an existing
toolpath into a collision-free trajectory, addressing one of the critical challenges in 5-axis
Additive Manufacturing (AM) the risk of collisions during the complex printing process. The
first algorithm adapts a voxel-based strategy, drawing on the methodology of Nishat et al.
to facilitate enhanced collision detection and avoidance. The second algorithm combines
the Gilbert-Johnson-Keerthi (GJK) method, the Expanding Polytope Algorithm (EPA), a
bounding box strategy, and a decomposition into convex elements. A unique aspect of
this approach is the optimization of the deposition head’s orientation through a weighted
normalization vector and the application of Lami’s theorem for memory retention of previous
collision extraction vectors. Additionally, we explore the dynamic updating of the voxelized
model during printing and the implementation of Bezier curves to smooth the orientation
transitions of the deposition head. These contributions not only demonstrate a significant
improvement in managing collision risks in 5-axis AM but also highlight the potential for
more reliable and efficient manufacturing processes. Experimental results underscore the
effectiveness of our algorithms, showcasing their capability to ensure collision-free toolpaths.

Keywords: Voxelization, Collision Detection and Avoidance, GJK, EPA, Optimization, Ad-
ditive Manufacturing
DOI: https://doi.org/10.14733/cadaps.2025.845-866

1 INTRODUCTION

Additive Manufacturing (AM) stands as a revolutionary advancement in manufacturing technologies. With
this advancement arises a fresh challenge: the potential for collisions during the print process. This research
narrows its focus on this collision management challenge, aiming to harness the power of voxel-based solutions
to bolster the efficiency and reliability of this nascent technology [5].
AM has become instrumental in modern production, known for its flexibility in creating complex, customized

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://orcid.org/0000-0001-5349-4946
mailto:alexandre.desgrees_du_lou@mines-albi.fr
mailto:\{bahoo,austin.vuong\}@torontomu.ca
mailto:bob.hedrick@camufacturing.com
mailto:alexandre.desgrees_du_lou@mines-albi.fr
http://www.cad-journal.net

846

designs directly from digital models. While traditional AM methods construct objects layer-by-layer, thereby
limiting the geometrical freedom and often requiring additional support structures, 5-axis AM transcends these
limitations. By introducing two additional rotational axes to the printing head movement, 5-axis AM allows
for more intricate product designs, reduces the need for support structures, and can potentially improve the
mechanical properties of printed objects by minimizing the anisotropic behavior often seen in traditional AM
materials. However, these advancements are not without new challenges.
The increased complexity of 5-axis movements means there is a higher risk of collision between the printing
apparatus and the object being printed. This risk is particularly pronounced when producing complex or nested
geometries, requiring advanced strategies for collision detection and avoidance.
Our approach to manage collisions unfolds in two primary stages: the first involves scrutinizing for possible
collisions between the deposition head and the 3D printed model. If a collision is detected, the second stage
kicks in, where the goal is to ascertain the best collision-free deposition head orientation scenario. As the AM
process adds material to the work volume, modelling the material deposited by the toolpath is essential.

1.1 Our Contribution

In this paper, we present two algorithms for modifying an existing toolpath into a collision-free toolpath.
The toolpath is determined by a sequence of coordinates in R3, symbolized by the set P . Each point along

this path has a distinct deposition head orientation, represented by a normalized vector in the same space.
The objective is to adjust these vectors as needed to prevent any collisions, thereby ensuring a collision-free
toolpath.

1. The first algorithm Sec. 3 reutilizes the methodology of Nishat et al. [16], as discussed in Section 2,
applied to a voxel-based.

2. The second algorithm Sec. 4 combines several techniques: the Gilbert-Johnson-Keerthi (GJK) [9], Ex-
panding Polytope Algorithm (EPA) [3], bounding box strategy [10], and decomposition into convex
elements. The major contribution lies in the use of a normalized vector on weights to obtain the best
extraction direction, as well as the use of Lami’s theorem to design a vector that retains memory of
previous collision extraction vectors as shown in Equation 2 and Figure 11.

The last contribution is in updating the voxel printed model during the printing process and smoothing the
orientation of the vector through the use of Bezier curves Sec. 5.

The paper is structured as follows. In the subsequent subsection 1.2, we describe our input data and the testing
environment. Section 2 discusses "related work" on five-axis printing, particularly their approaches to collision
detection and avoidance. We delve into the advantages of voxel-based collision detection and printed model
updating over time and highlight the significance of smoothing the deposition head orientation. In Section
3, we describe our initial approach, extending the results of Nishat et al. [16] to a voxel framework. Section
4 presents our new collision detection and avoidance algorithm that combines a bounding box strategy [10],
which promises quicker pinpointing of the collision zone, with the Gilbert-Johnson-Keerthi (GJK) approach
[9], renowned for its efficiency in testing collisions for convex entities. The subsequent phase of this algorithm
focuses on identifying the most secure and efficient method to generate a collision-free deposition head axis
vector. Here, the Expanding Polytope Algorithm (EPA) [3], a derivative of GJK, is employed to provide a
solution for the closest collision-free deposition head axis vector to the original one. Finally, in Section 5, we
describe the method used for printed model updating and smoothing the deposition head orientation.

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

847

1.2 Input data details and the testing environment

The initial framework for our study was defined by several key components. The deposition head and the CAD
model are defined by their respective STL files, called the deposition head and mold respectively throughout
this paper. Along with these, we considered constraints such as the height h,the contact tip to workpiece dis-
tance between the deposition head and path point as measured along the deposition head axis, the maximum
angular variations of θ between consecutive points on the toolpath, and an overall maximum angular variation
of Θ for the deposition head.
Our testing system specifications are as follows: Chip: Apple M1, Memory: 8GB, and Storage: 256GB Flash
Storage. Figure 1a displays the 3D printed model "Recreated Mold", and Figure 1b illustrates the 3D printed
model with red points corresponding to the AM toolpath.
The second toolpath was provided by the industrial partner: CAMufacturing Solutions Inc. (CAMu), and the
toolpath is carried out in the industrial mold called CAMu Mold, which can be seen in Figure 1c. The toolpath
(dark blue lines) is a .NC file, which provides the coordinates for each printing point, along with the direction
of the deposition head, as depicted in Figure 1e. The light blue line represents the direction of the deposition
head for specific points, see Figure 1f. For each point of the toolpath, the deposit head is positioned at a point
we will call C, which is offset 6 mm along the blue deposition head axis vector. In the event of a collision,
the rotation will be performed from point C. The deposition head is represented as an STL file, which was
provided by CAMu for the purpose of our study, as depicted in Figure 1d.
The dimensions of the CAMu Mold are 280 mm in x, 200 mm in y, and 80 mm in z dimensions. The
Deposition Head measures 58 mm in both x and y dimensions, and 160 mm in z. Finally, the Recreated
Mold has dimensions of 143 mm in x, 128 mm in y, and 74 mm in z.

(a) Simple mold cavity STL model (b) AM toolpath

Figure 1: Visualization of Mold Design and Toolpath.

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

848

(c) STL mold cavity with convex and concave sections (d) STL of deposition head from industrial partner

(e) AM toolpath (f) Deposition head axis (light blue lines)

Figure 1: Visualization of Mold Design and Toolpath.

2 RELATED WORK

Collision detection and avoidance in multi-axis additive manufacturing (AM) have been explored through sev-
eral innovative approaches. Nishat et al. demonstrate an algorithm for generating collision-free toolpaths in
multi-axis AM, prioritizing efficient orientation and trajectory planning to mitigate collision risks [16]. Fang et
al. examine layer-by-layer collision-free printing by optimizing setup orientations, aligning with Nishat et al.’s
strategy for selecting optimal tool vectors [7]. Plakhotnik et al. focus on collision avoidance by dynamically up-
dating tool vectors during the AM process, introducing penalties for deviations from ideal tool orientations [18].
Additionally, Jiang et al. delve into collision avoidance through effective scheduling in path planning, espe-
cially when employing multiple deposition heads in AM, showcasing a strategic approach to manage complex
geometries and workspace constraints [13]. These studies collectively address the intricate challenges of ge-
ometric complexity and workspace management in additive manufacturing, offering comprehensive strategies
for improving the efficiency and reliability of AM processes.

Voxelization stands out in 3D modeling for its distinct advantages over mesh-based representations, es-
pecially relevant in the fields of additive manufacturing and 5-axis machining. The method’s core advantage
stems from its discretization of space into voxels, significantly simplifying collision detection to basic boolean
operations [12, 8]. This simplification offers a marked departure from the complex, computationally intensive
mesh-based collision detection methods, such as those utilized by Nishat et al., including Möller’s triangle-

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

849

triangle intersection algorithm [15] and its refinements by Devillers and Guigue [6]. While these mesh-based
approaches are known for their precision, they require substantial computational efforts to perform detailed
geometric analyses. The voxel-based approach effectively circumvents these complexities by reducing the de-
tection of collisions to the assessment of voxel occupancy states, a process inherently suited for efficient parallel
processing. This characteristic of voxel models aligns perfectly with the capabilities of modern Graphics Pro-
cessing Units (GPUs), which excel at handling large volumes of parallelizable tasks. Consequently, voxelization
not only streamlines the collision detection process but also significantly benefits from the rapid advancements
in GPU technologies, facilitating real-time collision detection and response mechanisms that are critical for
dynamic manufacturing environments. A notable illustration of this efficiency is provided by Hermann et al.
[11], who developed a framework for collision detection optimized for GPU architectures. This approach not
only enhances the efficiency of collision detection but also allows for seamless integration of real-time sensor
data and increased responsiveness in trajectory planning and execution, underscoring the importance of fully
exploiting GPU capabilities for parallel processing of collision data. Importantly in additive manufacturing
progresses the printed model evolves, inherently increasing the probability of collisions. Voxel models adeptly
address this challenge by enabling rapid updates to the in-progress printed model. By adjusting voxel densities
to reflect newly formed parts of the object, voxelization ensures that collision detection remains accurate and
responsive throughout the printing process. This adaptability is particularly valuable in dynamic manufacturing
environments where modifications to the print model can occur in real-time.

In our exploration of advanced manufacturing techniques, we spotlight the approach by Nishat et al. [16]
due to its innovative contributions to collision detection and avoidance in additive manufacturing. Their
method stands as a pivotal reference for its strategic blend of geometric modeling and algorithmic efficiency.
Our focus on this work stems from its potential as a foundation for further advancements. By dissecting and
understanding its intricacies, we set the stage for introducing significant enhancements that aim to overcome its
limitations, specifically around computational efficiency and the adaptability of collision detection algorithms.
In the approach of Nishat et al., the object surfaces are modelled using a triangular mesh. In this scenario,
a collision is equivalent to a triangle intersection between two meshed objects. A simplified convex hull of
the deposition head is used for collision detection with 3D printed model, which increases the algorithm’s
performance by reducing the number of intersection tests to be performed. Their process for calculating a
collision-free trajectory consists of three steps:
1 - Generation of a variety of deposition head vectors to encompass all deposition head tilting possibilities

represented by the set S in spherical coordinates :

S =

{
(1, qθ, hδq)

∣∣∣∣ ∀q ∈ [[0,

⌊
Θ

θ

⌋
]], δq = arccos

(
cos(θ)− cos2(qθ)

sin2(qθ)

)
, ∀h ∈ [[0,

⌊
2π

δq

⌋
]]

}

As can be seen in Figure 2, set S is actually the disjoint union of the sets Cq for q in [[0, ⌊Θ/θ⌋]], where Cq

is the set of (1, qθ, hδq) for h in [[0, ⌊2π/δq⌋]]. Thus each deposition head vector is defined as the difference
between a point in set S and the origin, which is represented in the Figure 2 by a cross "x". For a better
understanding of the origin of δq, please refer [16] Section 3.1.

2 - For each point in set P , they conduct a collision test for all vectors in set S, leading to the construction
of a graph. In this graph, points from P denote levels and the collision-avoiding vectors from S serve
as vertices. All vertices at one level are linked to those on the next, with weights assigned based on the
angular variation of the deposition head. This variation is measured between the vector associated with a
vertex at the current level and that at the next one.

3 - Calculation a collision-free path using Dijkstra’s algorithm on the configuration graph.
Therefore, the performance of their algorithm depends on several key factors: the efficiency of the chosen

collision detection algorithm, the size of the configuration graph, which is influenced by the number of points

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

850

(a) Partial visualization of set S (b) Subset Cq of set S

Figure 2: Spatial representations of set S and its subset Cq

on the toolpath and the number of configurations (deposition head vectors) considered for each point. This
dependence highlights the inherent challenges in managing a large number of configurations and toolpath
points, which can significantly affect the computation time and complexity of the algorithm, thus representing
significant drawbacks of this method.
This study demonstrates that transitioning from mesh-based object representations to voxel-based ones marks
a notable improvement, facilitating the parallelization of collision tests and thereby reducing the computational
complexity of the process.
Although this method provides accurate collision detection, testing all possible orientations of the print head
remains computationally expensive. The Gilbert, Johnson, and Keerthi (GJK) algorithm [9] accelerates collision
detection for convex shapes. This limitation is partially overcome by techniques such as convex decomposition
CoACD [22], though this can significantly increase computation time depending on the desired accuracy of
decomposition. Another limitation lies in the fact that GJK provides a translational solution to collisions
where a rotational solution is necessary. A personal contribution is then made to address this issue.
Plakhotnik et al. highlight the importance of smoothing the deposition head orientation to enhance the quality
and efficiency of production [18]. Smoothing helps to minimize equipment wear and reduce irregularities on
produced surfaces, thus ensuring a high-quality finish. However, the implementation of smoothing techniques,
such as Bezier curves, must be carefully balanced to maintain production efficiency while avoiding collisions.
Utilizing the advancements in path planning, Tharwat et al. demonstrate an intelligent path planning model
that leverages Bezier curves optimized by a Chaotic Particle Swarm Optimization algorithm [21]. This model
effectively navigates a mobile robot through unknown environments by dynamically adjusting paths to avoid
obstacles. The utilization of Bezier curves in this context underscores their potential for generating smooth,
continuous trajectories, critical for both robotic navigation and advanced manufacturing processes. This
approach, analogous to what shown in [1], showcases the versatility of Bezier curves in optimizing trajectories
for complex tasks, including additive manufacturing, where precise control over deposition head movement
and collision avoidance is paramount.

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

851

3 VOXEL-BASED ADAPTATION FOR THE METHOD OF NISHAT ET AL.

In our approach, we substitute triangular meshes with voxels. However, the overarching objective remains to
find a collision-free toolpath. Following the three steps of the Nishat et al. approach, we generate the set S
in the same manner. The primary difference is that when we modify the orientation of the deposition head, it
is composed of voxels rather than meshes. For the second step, the collision testing process is different. It no
longer involves a collision process between triangles from different meshes but instead, it involves the creation
of a voxel grid, where each voxel has a density value of 1 if it is part of the mold, and 0 otherwise. The idea
is to test, for each position in P and for each orientation in S of the deposition head, whether any of the
deposition head’s voxels have a value of 1. To do this, we tested two Python libraries:
Open3D [23] and PyVista [20], both offering a method for voxelizing an STL object. PyVista’s voxelization
encompasses the entire volume of the object (31.23 seconds for the deposition head for a voxel size of 0.5
millimeter), which requires substantially more time than Open3D’s surface-based voxelization (0.12 seconds
for the deposition head for a voxel size of 0.5 millimeter). However, a key advantage of PyVista is its ability
to verify object closure, thus ensuring a watertight object. Conversely, with Open3D, not the entire surface is
voxelized, potentially leading to false positives during collision tests. For the upcoming tasks, we have chosen
to use the Open3D library due to its superior performance in terms of execution time for obtaining the voxelized
surface of objects, which is notably faster compared to PyVista.
The voxel models for the deposition head and molds are structured as follows: each model is a set of points
(x, y, z), where each voxel is identified by one vertex, as explained in Figure 3.

Figure 3: Voxel representation

For the sake of readability, the coordinates will be dilated by a factor corresponding to the voxel size of 0.5
mm.
We assume that the deposition head’s lower part is at a higher risk of collisions compared to its upper part.
To address this, we enhance voxel density on the surface of areas prone to risks. Specifically, we divide the
deposition head into three sections: the lower section receives a substantially increased voxel density, while the
middle and upper sections retain a lower density. This strategy effectively reduces the total number of voxels

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

852

for analysis, cutting down the execution time of the program. However, it also slightly increases the chance
of false positives. Finally, step three remains the same as that of Nishat et al., utilizing Dijkstra’s Algorithm
to find the shortest path that adheres to the machine’s printing constraints.

(a) Deposition head derived from risk-
zone voxelization, distributed as 58%,
35%, and 7% of 13,820 voxels. Execu-
tion Time 0.024s.

(b) Voxel model of 35,905 voxels obtained us-
ing the Open3D voxelization function. Execu-
tion Time 0.12s.

Figure 4: Comparative visualization of tools post-voxelization for voxel size of 0.5 mm.

3.1 Rotation Mechanism

After defining S, the set that represents the various orientation vectors of the deposition head to encompass
all possible tilting angles, as illustrated in Figure 2. It is necessary to determine each deposition head for every
deposition head vector. For efficient computation of the deposition head’s orientation, we employ Rodrigues’
rotation formula [19], as shown in Equation 1. Rodrigues’ formula provides a powerful method for calculating
the rotation matrix RY ′(θ) for a given axis of rotation Y′ and angle θ. In the formula, I represents the
identity matrix, indicating that when the rotation angle θ is zero, the rotation matrix reduces to the identity
matrix, implying no rotation. The matrix Q is the skew-symmetric matrix derived from the rotation axis,
and θ represents the rotation angle. The terms involving sin(θ) and (1 − cos(θ)) incorporate the sinusoidal
variation with the angle of rotation, reflecting the fundamental characteristics of rotational movement in three-
dimensional space. The formula efficiently encapsulates the rotation of any vector in three-dimensional space
around a specified axis Y′ by an angle θ, making it particularly suitable for calculating the new orientations
of the deposition head in additive manufacturing processes.

RY ′(qθ) = I + sin(qθ)Q+ (1− cos(qθ))Q2 (1)

The process begins with the voxelized deposition head oriented along the z-axis (Z). Let s = (1, qθ, hδq)
∈ S, the deposition head vectors. To obtain the voxelized deposition head oriented along s, we need to find
the vector Y′ around which it will rotate by q ∗ θ, as shown in Figure. 5:

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

853

Figure 5: Y’ rotation when h = 1

1 - To calculate X′ for any h in [[0,
⌊
2π
δq

⌋
]], we perform a rotation hδq of x-axis (X) around Z. This is

achieved using the rotation matrix about Z:

Rz(hδq) =

cos(hδq) − sin(hδq) 0

sin(hδq) cos(hδq) 0

0 0 1

Then, we multiply Rz(hδq) by X:

X′ = Rz(hδq)X

2 - After calculating X′, we determine Y′ using the cross product of vectors Z and X′. This can be written
as:

Y′ = Z×X′

3 - Finally, we can determine the rotation matrix around the axis Y′ using Rodrigues’ rotation formula:

RY ′(qθ) = I + sin(qθ)Q+ (1− cos(qθ))Q2

where Q is the skew-symmetric representation of Y′ and I the identity matrix.

Q =

0 −Y ′

z Y ′
y

Y ′
z 0 −Y ′

x

−Y ′
y Y ′

x 0

Each voxel v of the deposition head will now have new coordinates v′ such that v′ = RY ′(qθ)v.

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

854

The process leading to a new voxel model with non-integer coordinates. This inherent characteristic increases
the complexity of subsequent collision tests. One idea is to round off the voxel values, this will lead to
a modification of the object’s shape. Although this deviation might appear minimal, it would lead to a
maximum positional error of

√
3× voxel size. In our case, with a voxel size of 0.5 millimeter, the error would

be
√
3
2 millimeter, which is relatively small. Another idea would be to rotate the triangular mesh first and then

perform voxelization, thus ensuring that the obtained coordinates are integers while preserving the object’s
shape. However, doing this for every element in S would take a significant amount of time depending on the
voxelization speed.

3.2 Results

By employing parallelization for optimization, we achieved results with a maximum angular variation of Θ = 70◦

and a variation of θ = 10◦ for both our recreated custom mold and the CAMu industrial’s mold, using the
deposition head depicted in Figure 4a. The time to create the set S of deposition head orientations was 0.028
seconds. The results are shown in Table 1. In this table, the numbers 5200 and 4744 represent the count of
points (coordinates in x, y, z) on the toolpath for the Recreated Mold and CAMu Mol models, respectively.
Before completing the printing process, the deposition head must pass through these points.

Mold Execution Time Total Time

Recreated Mold (5,200 points) 88.3 s 88.6 s

CAMu Mold (4,744 points) 83.3 s 83.6 s

Table 1: Results of optimization for two different molds without parallelization

The total time is the summation of the voxelization time for both the deposition head and the mold, the time
required to obtain the set S, and the time to determine the collision-free path.

As we can observe in Table 2, a comparison has been made between the execution times for achieving a
collision-free toolpath. This comparison specifically relates to our voxel-based approach under conditions that
were closely equivalent to those presented by Nishat et al. in Table 1 of their paper. The scenario considered
involves a toolpath comprising 273 points, akin to the bathtub example, here referred to as the recreated
mold. The sole difference between our setups lies in the hardware used. For context, the specifications of the
testing system used by Nishat et al. are as follows:

• Chip: Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz

• Memory: 32GB 2933MHz DDR4

• Storage: 953.86GB (Model: SKHynix_HFS001TD9TNI-L2B0B)

In contrast, my system is less powerful. This discrepancy in hardware underscores the notable improvement
facilitated by the use of a voxel-based approach in our study. Furthermore, while the solution from Nishat et al.
was implemented in C++, our implementation was carried out in Python using PyTorch for parallelization. This
direct comparison not only demonstrates the efficiency of voxel-based methods in computational performance
for generating collision-free toolpaths but also highlights the potential of leveraging Python with parallel
computing frameworks to achieve competitive results.

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

855

Method Execution Time Parallelization

Nishat et al. (C++ with Moller’s Algorithm) 66 s Yes

Commercial third-party library (Sequential) 4.4 s No

Our Approach with Recreated Mold (Python 3.9 on CPU) 6 s No

Our Approach with Recreated Mold (Python 3.10 on GPU T4x2) 1.2 s Yes

Table 2: Comparative Analysis of Execution Times for Computing Collision-Free Toolpaths

4 GJK WITH BOUNDING BOX AND EPA ALGORITHM

4.1 GJK Algorithm

The Gilbert-Johnson-Keerthi (GJK) algorithm is a sophisticated method used for detecting the intersection of
two convex sets in three-dimensional space. It capitalizes on the concept of the Minkowski difference between
two sets, A = {a | a ∈ R3} and B = {b | b ∈ R3}. The critical insight hinges on the idea that if the Minkowski
difference A⊖B = {a− b | a ∈ A, b ∈ B} includes the origin, then the sets intersect.
Rather than fully constructing the Minkowski difference, which is computationally demanding, the GJK al-
gorithm smartly approximates the intersection testing. It leverages specific support functions ψ, to work
efficiently with subsets of points located on the surfaces of A and B respectively. ψ is defined as:

ψA : R3 → R, d 7→ max
a∈A

(a · d)

As shown in Figure 6, ψ applied to the set A (ψA) takes a vector d from R3 and returns a point from set A
that is farthest in the direction of d.

Figure 6: 2D representation of the ψ function

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

856

Indeed, applying this function to the set A⊖B yields the following equation:

ψA⊖B(d) = ψA(d)− ψB(−d)

These functions (ψA,ψB) are instrumental in deducing the necessary conditions for the presence of the origin
within the Minkowski difference, symbolizing a collision or intersection. Here, a collision is defined as the
overlap of two objects.
Its primary constraint is its applicability only to convex objects. However, the Python library CoACD [22] offers
a solution by decomposing a non-convex object into a collection of convex sub-objects. Decomposition can
take some time, depending on the complexity of the object.

(a) Convex Decomposi-
tion of simple mold by
CoACD

(b) Convex Hull of de-
position head

(c) Mesh from deposi-
tion head’s Convex Hull

Figure 7: Visualization of Convex Decomposition and Hull Generation

As shown in Figure. 7 the deposition head’s form closely mirrors its convex hull, ensuring this approximation
doesn’t lead to complications. The collision assessment involves applying GJK between the deposition head and
a convex sub-object of the mold. This process is repeated until all sub-objects are examined. An optimization
strategy involves focusing on sub-objects within the mold that are in close proximity to the deposition head.
This is achieved by employing a bounding box [10] around the deposition head to narrow down the area of
interest to only those sub-objects surrounding the object.
Figure 8 illustrates an application of this optimization strategy in the context of a collision state between
voxelized convex sub-objects of the simple mold and the voxelized mesh from the deposition head’s Convex
Hull. It can also be applied directly to their meshes, which eliminates the need for the voxelization step.

Figure 8: Visualization of a collision state between the simple mold and the convex hull of the deposition
head

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

857

Collision with the green convex sub-objects Collision with the purple convex sub-objects

View from inside the Deposition Head

Figure 8: Visualization of a collision state between the simple mold and the convex hull of the deposition
head

Figure 8 displays two collision states for two different points along the toolpath. The key observation here is
that the collision state is actually an overlap between the Deposition Head and convex sub-objects.

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

858

4.2 EPA Algorithm

The Expanding Polytope Algorithm (EPA) serves as a natural progression from the GJK algorithm. Its primary
purpose is to leverage the simplex, a byproduct of GJK, to identify the minimum displacement vector essential
for collision resolution. This vector, which we will refer to as the extraction vector, represents the most efficient
path to exit a collision state. It signifies the shortest distance between the origin and the surface of A ⊖ B.
Indeed, if we subtract the extraction vector from the set A⊖B, then the origin no longer belongs to the set,
thus eliminating the collision state.
This algorithm is highly efficient in terms of time complexity. However, it only works on convex objects. This
problem is resolved by the CoACD library, which decomposes our object into a sum of n convex sub-objects.
Nevertheless, this introduces a new problem: multiple sub-objects collide with the deposition head. Therefore,
we have a collision extraction vector Vi available for each colliding sub-object i. To determine the correct
extraction vector to prevent further collisions, we compute a weighted average of the magnitudes of the vectors.
We compute the weights wi for n vectors as wi =

∥Vi∥∑n
k=1 ∥Vk∥ and then calculate the correct extraction vector

V as V =
∑n

k=1 wkVk.
This method provides an extraction vector, V, which suggests translating the deposition head to exit the
collision state. However, any translation is infeasible during 3D printing. Thus, a rotation centered at the tip
of the deposition head, in the direction of V is required. We can therefore iteratively vary the unit orientation
N of the deposition head in the direction V.

(a) Origin of the extraction vector V
(b) Desired, but Impossible Position of the deposition
head

Figure 9: Visualization of the output of the EPA Method for Collision Avoidance

As visualized in Figure 9, EPA provides an extraction vector V, which suggests translating deposition head
represented by the red object to exit the collision state. However, any translation is infeasible during 3D
printing. Thus, a rotation centered at point C (the tip) in the direction of V is required.
This method involves iteratively adjusting the deposition head vector N towards V. In 3D, as shown in Fig. 10
the angle difference |β − ϕ| must be less than θ. The new deposition head vector N′ is determined by rotating

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

859

Figure 10: Variation of the deposition head vector in 3D

N by an angle γ around vector d = N ×V. Subsequently, to ensure the condition is met, we only need to
verify that:

|arccos (Z ·N)− arccos (Z ·N′)| < θ

which is:
|arccos (Z ·N)− arccos (Z ·Rd(γ)N)| < θ

4.3 Algorithm

The operation of the algorithm is as follows:
1. Convex decomposition: The program uses CoACD to decompose the object into convex subparts.
2. STL to voxel transformation: The STL model of the deposition head is converted into a voxel model

with a distribution of voxels categorized into three zones: low, middle, and high.
3. There are two methods to change the orientation of deposition head positioning:

• The initial orientation of the deposition head is aligned with the z-axis, and it will be modified from this
starting position.

• The second method continuously adjusts the deposition head’s orientation throughout the path. For each
point, the deposition head’s orientation is determined based on the result of the procedure that exits the
collision state from the previous point.

4. Mask retrieval: Using the deposition head’s bounding box, only the 3D printed model region in collision
with the deposition head is selected. The goal then is to execute the GJK algorithm solely on the convex
subparts within this zone.

5. Deposition head zone selection: Identify the region of the deposition head in contact with the colliding
3D printed model zone using the bounding box of this zone. This selected region is then used in the
orientation adjustment method to conduct collision tests of equivalent density.

6. GJK execution: Execute the GJK algorithm on these zones. Subsequently, the extraction vector is
determined using the EPA following the GJK.

7. Two iterative methods exist for adjusting the orientation:
• The first method involves obtaining the extraction vector initially and iterating the deposition head’s

rotations in this direction. However, this can lead to new collisions.

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

860

• The other option is to recalculate a new extraction vector after each rotation. The new extraction
direction is computed using Lami’s theorem [14] to retain information about both the previous and new
vectors.

Lami’s theorem provides a relationship among three vectors to maintain an object in equilibrium. This can
be visualized as a sphere wedged in a corner; See Fig. 11. The relationship provided by Lami’s theorem is
expressed as follows:

∥A∥
sin(β)

=
∥B∥
sin(ϕ)

=
∥C∥
sin(γ)

(2)

(a) Sphere in equilibrium on a non-convex support (b) Link between vectors

Figure 11: Lami’s theorem application

In our scenario, let’s assume that A represents the previous extraction vector and B the new one. Then,
we can derive the new extraction vector C, which is a combination of vectors A and B in order to retain the
information.

4.4 Results

Aspect Recreated Mold CAMu Mold

Decomposition into convex sub-elements 12.7 s 13.2 s

Execution Time (after summing all program actions) 71.2 s 95.4 s

Table 3: Decomposition and Execution Times for the Molds without parallelization

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

861

4.5 Results

Aspect Recreated Mold

Decomposition into convex sub-elements 12.7 s

Execution Time (after summing all program actions) 71.2 s

Table 4: Decomposition and Execution Times for the Mold without parallelization

As demonstrated in Table 4, the total execution time for our second method with GJK is comparable to that of
our voxel-based approach, as shown in Table 1. However, as the complexity of the object’s geometry increases,
such as with the CAMufacturing Solutions Inc. Mold, the execution time also rises. Despite this, the results of
these two approaches remain superior to those of Nishat et al. [16], even without considering parallelization.
Consequently, our results represent an improvement, indicating not only efficiency gains but also potentially
broader applicability in real-world scenarios where execution speed is crucial.

5 UPDATING THE PRINTED MODEL AND REDUCING JITTERING

In our 3D printing model, we simulate material extrusion through voxelized spheres, updating their values
as the deposition head moves for real-time updates. To ensure smoother transitions and reduce jitter, we’ve
implemented an angular adjustment function using Bezier curves. This smooths out angular changes and
segments the toolpath for efficient computation, resulting in continuous, stable motion.

5.1 Updating the Printed Model

In the live updating of the printed model, a sphere of a certain radius is created to represent the material
extruded from the deposition head, which is then voxelized as shown in Fig. 12 . As the deposition head
moves linearly from point A to point B, the voxels under the deposition head, corresponding to the sphere’s
position, are densified, changing their value from 0 to 1. This occurs each time the deposition head travels a
distance along the linear path. Consequently, the printed model is continuously updated during the printing
process. The deposition head maintains a constant distance h perpendicular to the printing point. The sphere
is deposited at the printing point, following the tangent direction. Additionally, there’s no issue of overlap
between two spheres if the distance d separating them is less than their diameter, as it’s merely a matter of
voxel density changing from 0 to 1.

(a) Bead (b) Voxelized Bead

Figure 12: Comparison of Bead Geometry Before and After Voxelization Under the Deposition Head

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

862

5.2 Reducing Jittering

In our function, which adjusts the inclination of the deposition head, the output is a vector of dimensions
N × 2. Here, N denotes the number of points along the path. Each path point is associated with two
coordinates: the angle θ, resulting from the dot product between the deposition head vector and z-axis; and
the rotation angle δ around z-axis, starting from x-axis.
To smooth the angular variation, this vector is first transformed to represent the angular difference between
successive points, yielding a new array of size (N − 1)× 2. This array captures the deposition head’s angular
variation for N points.
The angular variation is considered in the counterclockwise direction. If the angular difference |∆| between
two consecutive points is larger than |2π −∆|, this angular variation is chosen to ensure the shortest path to
the new position.
To mitigate jittering, the Bezier Function [2] is employed, mathematically represented for K control points as
B(t) =

∑K−1
i=0 PiBi,K−1(t), where Bi,K−1(t) are the Bernstein polynomials over the interval [0, 1].

To define the control points P , we conceptualize them as vectors in R3. The first coordinate represents the
position of the control point to preserve the ordering of points along the toolpath. The second coordinate y
corresponds to the angular variation θ, and the third coordinate z) corresponds to the angular variation δ.
If there are N points on the toolpath, there will be N − 1 control points, each derived from the angular
variations between consecutive points. We compute the Bezier curves using segments of 10 control points
each. After computing, these segments are reconnected.
The continuity at the connection points of these curves is ensured to be at least C1 continuity, meaning the
position and the first derivative (tangent) are continuous across segments. This level of continuity is achieved
by aligning the tangents at the end of one segment with the tangents at the beginning of the next, ensuring
smooth transitions without abrupt changes in the toolpath.

6 VOXEL OCCUPANCY ANALISYS FOR COLLISION ACCURACY

The accuracy of our method depends on the extent to which voxels occupy the surface of the voxelized ob-
ject. Larger voxel sizes result in more unoccupied volume, which alters the representation of the object. To
measure the model’s precision, we focus on the 8 vertices of each voxel. These vertices, representing the
voxel’s boundaries, provide critical data points for measuring discrepancies between the voxelized model and
the actual object.
Using the Signed Distance Function (SDF) [17] method, we project the 8 vertices of each voxel onto the
surface of the STL object to obtain their distances from this surface. These distances are negative if the
points are inside the object and positive if they are outside. We retain voxels with at least one vertex outside
the surface and measure the average discrepancies for these vertices. Then, we calculate the mean of these
averages, reflecting the voxel model’s precision (i.e., the extent to which surface voxels are occupied).

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

863

Figure 13: Relationship between Voxel Size and Mean Unoccupied Voxel Volume Height at STL Surface

This method allows us to quantify the average height of the unoccupied volume within the surface voxels,
which is directly related to the accuracy of voxel-based collision tests. Since collision detection is a density
overlap test (True: presence, False: absence), this detection is accurate because there is always some unoccu-
pied volume height for each of the two voxelized models. Additionally, there are no false positives, only true
negatives, as the voxel approximation is always constructed to encompass the STL model, thus including the
STL volume within the voxel space.
By optimizing voxel size, we can improve collision detection precision while maintaining acceptable compu-
tational efficiency, which is crucial for industrial applications where both speed and accuracy are important.
Figure 13 results from the voxelization process of the Recreated Mold at various voxel sizes ranging from 3 mm
to 0.4 mm. It illustrates that as the voxel size decreases, the average height of the unoccupied volume also
diminishes. Consequently, the likelihood of encountering a false negative collision event decreases. However,
such fine resolution requires significant memory capacity to store the increased number of voxels.

7 MEMORY REQUIREMENTS OF VOXEL-BASED MODELS

This section evaluates and compares the memory requirements of voxel-based models across various voxel
sizes to the memory used for the original STL models. Each mesh, loaded from an STL file, is voxelized at
resolutions ranging from 3 mm to 0.1 mm. Following voxelization, a three-dimensional tensor representing
the bounding box of the STL model is created. This tensor consists of boolean elements, where a value of
1 (or True) indicates a voxel at the surface of the object, and 0 otherwise. However, the storage of boolean
values in Python, typically encoded over several bits, requires significant memory, especially for storing zeros.
To conserve memory, the tensor can be transformed into a sparse format [4]. The concept of sparsity, which
refers to the proportion of zero elements in a dataset, is employed to enhance storage efficiency. The key idea
is to store only the pertinent values, in this case, the surface voxels that are True. Thus, only the indices and
values of these nonzero elements are stored, significantly reducing memory requirements.

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

864

Figure 14: Comparison of memory usage for boolean tensor and sparse storage.

Figure 14 illustrates the comparative storage requirements for Recreated Mold using boolean tensors and sparse
storage formats. The boolean tensor storage, shown with a red line, exhibits explosive growth, whereas the
sparse storage, represented by a blue line, increases linearly up to a certain voxel size. However, below a
voxel size of 0.5 mm, the difference in storage between the two methods is negligible. Therefore, for models
requiring a large number of voxels or smaller voxel sizes, it is necessary to switch to a sparse storage structure.
In our specific case, having chosen a voxel size of 0.5 mm, we will continue to use the boolean tensor format.
The table 5 is provided to compare the memory requirements for the STL file, boolean tensor, and sparse
format across our three models for a voxel size of 0.5 mm.

Model STL Memory (GB) Boolean Tensor (GB) Sparse Storage (GB)

CAMu Mold 0.00253 0.036 0.012

Deposition Head 0.00008 0.004 0.003

Recreated Mold 0.00006 0.011 0.008

Table 5: Memory requirements for different models in various formats.

Despite using boolean values and sparse storage, this table highlights the substantial increase in memory re-
quirements for voxel models compared to the original STL models.

This analysis demonstrates that despite the increased execution speed associated with using voxels instead
of the STL model, which enables efficient parallelization, a balance must be struck between the precision of
the collision detection test and memory usage. The precision of the collision test increases as the voxel size
decreases; however, smaller voxel sizes also lead to higher storage requirements. An optimal compromise for

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net

865

the models we have used is achieved with a voxel size of 0.5 mm. This size is reasonable both in terms of
memory storage and collision test precision. It is important to note again that true negatives do not occur
due to the adopted voxelization approach. However, this could potentially lead to false collision detections.

8 CONCLUSION AND FUTURE WORK

In this research, we have successfully developed and demonstrated two algorithms that enhance the process of
detecting and avoiding collisions within toolpaths for additive manufacturing (AM). These methods not only
accelerate the detection process but also ensure the generation of viable, collision-free alternatives, marking
a substantial step forward in the operational efficiency of AM technologies. While our current methodologies
show promising results, their adaptation to the fast-paced demands of industrial AM processes necessitates
further optimization to achieve the desired speeds. Parallelization emerges as a promising avenue to address
this challenge, potentially enabling real-time collision avoidance capabilities even in the most complex manu-
facturing scenarios.
Our findings suggest that a strategic focus on concentrating voxel tests within areas of high collision risk,
thereby reducing the number of voxels requiring examination, could decrease execution times. This approach
implies a more intelligent allocation of computational resources, prioritizing areas where the likelihood of col-
lision is greatest and thus enhancing the overall efficiency of the collision detection and avoidance process.
Looking forward, our study opens several pathways for future research. These include the refinement of voxel-
based methods to further minimize computational demands without compromising accuracy, the exploration
of advanced parallelization techniques to support real-time processing requirements, and the development of
adaptive algorithms capable of dynamically adjusting to varying levels of complexity within the AM process.
Additionally, the integration of machine learning algorithms could offer predictive insights into collision risk
areas, automating the optimization process for toolpath generation in unprecedented ways.

REFERENCES

[1] Aldair, A.A.; Rashid, M.T.; Rashid, A.T.: Navigation of mobile robot with polygon obstacles avoidance
based on quadratic bezier curves. Iranian Journal of Science and Technology, Transactions of Electrical
Engineering, 43(4), 757–771, 2019.

[2] Bézier, P.: Numerical control-mathematics and applications. Translated by AR Forrest, 1972.
[3] Cameron, S.: Enhancing gjk: Computing minimum and penetration distances between convex polyhedra.

In Proceedings of international conference on robotics and automation, vol. 4, 3112–3117. IEEE, 1997.
http://doi.org/10.1109/ROBOT.1997.606761.

[4] Candès, E.J.; Wakin, M.B.: An introduction to compressive sampling. IEEE signal processing magazine,
25(2), 21–30, 2008.

[5] Cohen-Or, D.; Kaufman, A.: Fundamentals of surface voxelization. Graphical models and image process-
ing, 57(6), 453–461, 1995. http://doi.org/10.1006/gmip.1995.1039.

[6] Devillers, O.; Guigue, P.: Faster triangle-triangle intersection tests. Ph.D. thesis, INRIA, 2002.
[7] Fang, G.; Zhang, T.; Zhong, S.; Chen, X.; Zhong, Z.; Wang, C.C.: Reinforced fdm: Multi-axis filament

alignment with controlled anisotropic strength. ACM Transactions on Graphics (TOG), 39(6), 1–15,
2020.

[8] Gibson, S.F.F.: Beyond volume rendering: visualization, haptic exploration, and physical modeling of
voxel-based objects. In Visualization in Scientific Computing95: Proceedings of the Eurographics Work-
shop in Chia, Italy, May 3–5, 1995, 10–24. Springer, 1995.

[9] Gilbert, E.G.; Johnson, D.W.; Keerthi, S.S.: A fast procedure for computing the distance between complex

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://doi.org/10.1109/ROBOT.1997.606761
http://doi.org/10.1006/gmip.1995.1039
http://www.cad-journal.net

866

objects in three-dimensional space. IEEE Journal on Robotics and Automation, 4(2), 193–203, 1988.
http://doi.org/10.1109/56.2083.

[10] Gottschalk, S.A.: Collision queries using oriented bounding boxes. The University of North Carolina at
Chapel Hill, 2000.

[11] Hermann, A.; Drews, F.; Bauer, J.; Klemm, S.; Roennau, A.; Dillmann, R.: Unified gpu voxel collision
detection for mobile manipulation planning. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 4154–4160. IEEE, 2014.

[12] Jang, D.; Kim, K.; Jung, J.: Voxel-based virtual multi-axis machining. The International Journal of
Advanced Manufacturing Technology, 16, 709–713, 2000.

[13] Jiang, Z.; Wang, H.; Sun, Y.: Improved co-scheduling of multi-layer printing path scanning for collabo-
rative additive manufacturing. IISE Transactions, 53(9), 960–973, 2021.

[14] Kumar, D., A.; Kushreshtha: Engineering Mechanics: Statics and Dynamics. Jaypee University of
Information Technology, Solan, HP, 2015.

[15] Möller, T.: A fast triangle-triangle intersection test. Journal of graphics tools, 2(2), 25–30, 1997.
[16] Nishat, R.I.; Bahoo, Y.; Georgiou, K.; Hedrick, R.; Jill, R.: Collision-free multi-axis tool-path for additive

manufacturing. Computer-Aided Design and applications, 2023.
[17] Osher, S.; Fedkiw, R.; Piechor, K.: Level set methods and dynamic implicit surfaces. Appl. Mech. Rev.,

57(3), B15–B15, 2004.
[18] Plakhotnik, D.; Glasmacher, L.; Vaneker, T.; Smetanin, Y.; Stautner, M.; Murtezaoglu, Y.; van Houten,

F.: Cam planning for multi-axis laser additive manufacturing considering collisions. CIRP Annals, 68(1),
447–450, 2019.

[19] Rodrigues, O.: Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et
de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes
qui peuvent les produire. Journal de mathématiques pures et appliquées, 5, 380–440, 1840.

[20] Sullivan, C.; Kaszynski, A.: Pyvista: 3d plotting and mesh analysis through a streamlined interface for
the visualization toolkit (vtk). Journal of Open Source Software, 4(37), 1450, 2019. http://doi.org/
10.21105/joss.01450.

[21] Tharwat, A.; Elhoseny, M.; Hassanien, A.E.; Gabel, T.; Kumar, A.: Intelligent bézier curve-based path
planning model using chaotic particle swarm optimization algorithm. Cluster Computing, 22, 4745–4766,
2019.

[22] Wei, X.; Liu, M.; Ling, Z.; Su, H.: Approximate convex decomposition for 3d meshes with collision-
aware concavity and tree search. ACM Transactions on Graphics (TOG), 41(4), 1–18, 2022. http:
//doi.org/10.1145/3528223.3530103.

[23] Zhou, Q.Y.; Park, J.; Koltun, V.: Open3d: A modern library for 3d data processing. arXiv preprint
arXiv:1801.09847, 2018.

Computer-Aided Design & Applications, 22(5), 2025, 845-866
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://doi.org/10.1109/56.2083
http://doi.org/10.21105/joss.01450
http://doi.org/10.21105/joss.01450
http://doi.org/10.1145/3528223.3530103
http://doi.org/10.1145/3528223.3530103
http://www.cad-journal.net

	INTRODUCTION
	Our Contribution
	Input data details and the testing environment

	RELATED WORK
	VOXEL-BASED ADAPTATION FOR THE METHOD OF NISHAT ET AL.
	Rotation Mechanism
	Results

	GJK WITH BOUNDING BOX AND EPA ALGORITHM
	GJK Algorithm
	EPA Algorithm
	Algorithm
	Results
	Results

	UPDATING THE PRINTED MODEL AND REDUCING JITTERING
	Updating the Printed Model
	Reducing Jittering

	VOXEL OCCUPANCY ANALISYS FOR COLLISION ACCURACY
	MEMORY REQUIREMENTS OF VOXEL-BASED MODELS
	CONCLUSION AND FUTURE WORK

