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Abstract. Process Parameters are crucial in controlling the properties of additive 
manufacturing (AM) products based on the complex nature of AM technologies. 

Traditional methods are being replaced by machine learning (ML) in the selection 
and optimization of AM process parameters due to the comprehensive features of 
ML. While several review studies have been conducted to search for different 

solutions in the field, most of these reviews are limited to a single AM technique. 
This paper aims to provide a comprehensive general overview of the latest 
developments in AM parameter selection and optimization using ML methods. By 
synthesizing review ML applications in various AM techniques, this paper offers 

valuable insights into advancements and trends in parameter selection and 
optimization using ML for a deep understanding and informed decision-making in 
the field. 
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1 INTRODUCTION 

Additive manufacturing (AM) has transcended its initial role in product prototyping for an integral 
part of the manufacturing process, which reshapes the production landscape with AM 
transformative capabilities. Through the additive process of building objects layer by layer from 
digital designs, AM stands in stark contrast to traditional subtractive manufacturing methods that 
rely on material removal from solid blocks [1]. This fundamental difference not only unlocks new 

possibilities for design complexity and customization but also introduces unparalleled efficiency and 
flexibility into the manufacturing workflow.  

The versatility of AM extends across processing a wide range of materials, including composites, 
ceramics, and metals, further broadening its applicability in diverse industries. In sectors such as 
aerospace, automotive, healthcare, and consumer goods, AM has emerged as a game-changer, 
enabling the fabrication of intricate prototypes, customized medical implants, lightweight aerospace 
components, and more [2].  

The ability to manipulate different materials at a microscale level and construct complex 

geometries with precision has revolutionized product development and manufacturing processes, 
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driving innovation, and unlocking new opportunities for advancement across various industries [3]. 
In recent years, significant advancements in AM technologies have propelled the industry towards 
high levels of accuracy, reliability, and cost-effectiveness [1]. 

Innovations in material science, machine tools, and software algorithms have led to AM 

encompassing a broad spectrum of technologies and materials, each uniquely suited to different 
applications and research objectives. This diversity in AM technologies, ranging from Fused 
Deposition Modeling (FDM) and Stereolithography (SLA) to Selective Laser Sintering (SLS) and 
Direct Metal Laser Sintering (DMLS), stems from the need to accommodate varying design 
requirements, material properties, and end-use functionalities [1]. For instance, FDM is typically 
employed for rapid prototyping and plastic parts due to its cost-effectiveness and ease of use [12], 
while DMLS is preferred for producing high-strength, intricate metal components essential in 

aerospace and medical applications. Similarly, SLA is favored for its precision and surface finish, 

making it ideal for detailed prototypes and molds [32]. The broad range of materials used in AM, 
including polymers [33], metals [44], ceramics, and composites [2], further enhances its 
applicability across diverse industries, enabling the creation of products with specific mechanical, 
thermal, and chemical properties. This technological and material versatility is crucial in 
applications as it allows users to tailor their approaches to the unique demands of their projects, 

thereby advancing innovation and expanding the potential of AM in various fields. Table 1 outlines 
the key AM technologies, their working principles, types of materials they process, and their 
primary applications. 

 

AM Technology Working Principle Materials Applications 

Fused Deposition 
Modeling (FDM) 

Extrudes thermoplastic filaments 
layer by layer through a heated 
nozzle 

Thermoplastics 
(e.g., PLA, ABS) 

Rapid prototyping, 
plastic parts 

Stereolithography 
(SLA) 

Cures liquid photopolymer resin 
layer by layer using a UV laser 

Photopolymers Detailed 
prototypes, molds 

Selective Laser 
Sintering (SLS) 

Uses a laser to sinter powdered 
material, binding it together to 
create a solid structure 

Polymers, 
composites 

Functional 
prototypes, low-
volume production 

Direct Metal Laser 
Sintering (DMLS) 

Melts metal powder layer by layer 
using a high-powered laser 

Metals (e.g., 
titanium, 
aluminum) 

High-strength 
components, 
aerospace, medical 
implants 

Binder Jetting Deposits a liquid binding agent 

onto a powder bed to create 
layers 

Ceramics, 

metals, sand 

Complex 

geometries, custom 
manufacturing 

Electron Beam 

Melting (EBM) 

Uses an electron beam to melt 

metal powder layer by layer 

Metals (e.g., 

titanium alloys) 

Aerospace, medical 

implants 

Material Jetting Jets droplets of photopolymer or 
wax material layer by layer, 
curing with UV light 

Photopolymers, 
wax 

High-detail models, 
casting patterns 

Laminated Object 
Manufacturing 
(LOM) 

Layers of adhesive-coated paper, 
plastic, or metal laminates are 
bonded together and cut to shape 

Paper, plastics, 
metals 

Low-cost 
prototypes, 
structural models 

Digital Light 
Processing (DLP) 

Uses a digital light projector 
screen to flash a single image of 
each layer across a resin surface 

Photopolymers High-resolution 
parts, dental 
applications 

 
Table 1: Major AM technologies and their differences [1]. 
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Differentiating AM technologies based on their working principles provides a clear understanding 
why various methods are employed across different applications. Each AM technique offers unique 
capabilities, material compatibilities, and application advantages, making it essential for users to 
select the appropriate technology for their specific objectives. This diversity in AM technologies 

underscores the broad applicability of AM in advancing innovation across multiple industries. 
The selection of the right set of parameters and their optimization governs the AM fabrication 

process [4]. Parameters such as layer thickness, build orientation, scanning speed, laser power, 
and material composition are significant in shaping the mechanical properties, surface finish, and 
dimensional accuracy of printed components. The careful selection and optimization of the 
parameters is significant for the quality, efficiency and economic feasibility of the AM process [5].  

Traditionally, engineers and researchers relied on conventional methods such as the design of 

experiment (DOE) [22], Taguchi method [3], response surface methodology (RSM), trial-and-error 

method, and heuristic approach to determine optimal parameter settings for AM [47]. While 
effective to some extent, these conventional methods are time-consuming, resource-intensive, and 
often result in suboptimal outcomes due to the complex interdependencies among various 
parameters. As the demand for faster production cycles and higher quality standards intensifies, 

there arises a pressing need for more efficient approaches to the parameter selection and 
optimization in AM. 

In recent years, Machine Learning (ML) has emerged as a powerful tool for addressing the 
challenges associated with the parameter optimization in AM. By leveraging large datasets, 
advanced algorithms, and computational modeling techniques, ML algorithms can analyze complex 
patterns, identify optimal parameter configurations, and iteratively refine process parameters to 
achieve desired performance objectives [9]. The integration of ML techniques into the AM workflow 

holds immense potential to revolutionize the way that researchers approach parameter 
optimization, leading to faster production cycles, improved part quality, and enhanced cost-
effectiveness [10].  

Several studies provide insights into correlations between processing parameters and 
mechanical properties in AM [12,15,25]. Additionally, research delves into laser powder bed fusion 
(L-PBF) and utilizes ML for anomaly detection, demonstrating ML potential to enhance the real-time 
control and optimization in metal AM processes [14]. Toprak et al. conducted a review of 

contemporary trends in optimizing process parameters in the metal powder bed fusion (M-PBF) to 
analyze their impact on part properties [44]. Wang et al. and Jin et al. reviewed ML roles in 
correlating process, structure, and property in AM, systematically analyzing data-driven modeling, 
including input features, outputs, data sources, models, limitations, and future research directions 
[8,16]. 

Different reviews have delved into the realm of parameter optimization in specific AM 

techniques, such as Powder Bed Fusion (PBF) [44] and Fused Deposition Modeling (FDM) [12]. 
These reviews provide insights into intricacies of the parameter selection and optimization tailored 
to nuances of individual AM processes. For instance, some studies have specifically explored the 

utilization of ML for the parameter optimization in Powder Bed Fusion AM [44], where the focus lies 
on optimizing parameters like the laser power, scanning speed, and powder bed temperature to 
enhance the part quality and build efficiency. Similarly, other reviews have concentrated on FDM, 
discussing methods to optimize parameters like the layer height, nozzle temperature, and infill 

density to achieve desired mechanical properties and surface finish in printed parts [12,39]. While 
these focused reviews offer valuable insights into the parameter optimization within specific AM 
domains, there remains a need for a more holistic perspective that transcends boundaries of the 
individual AM processes. 

The aim of this paper is to provide a broader review of the parameter selection and optimization 
in AM, covering various AM techniques under a unified framework. By reviewing existing knowledge 
and drawing parallels across different AM processes, this paper seeks to explain common 

challenges, methodologies, and opportunities for leveraging ML techniques in the parameter 
optimization across AM. Rather than limiting into the specifics of any single AM technique, this 

review is to present a comprehensive overview of parameter optimization principles that are 
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applicable across diverse AM techniques, thereby offering valuable insights for researchers in the 
realm of AM and ML. 

The following parts of the paper are organized as follows. Section 2 introduces our review 
methods. AM parameters are introduced in Section 3. AM parameter selection methods are 

discussed in Section 4. Key challenges in ML-based parameter selection are explored including 
trade-offs, model selection, and data considerations in Section 5, followed by discussion and 
conclusion in Sections 6 and 7, respectively.  

2 REVIEW METHOD 

Literature is selected for review based on relevance, credibility and recency. The critical analysis 
and discussion are integrated to understand methodologies and implications of ML in AM parameter 

selection. This structured approach aims to offer valuable insights for researchers and practitioners 

in the field. 
In compiling the review on the selection and optimization of process parameters in AM using ML, 

we carefully made a diverse selection of reviewed papers to ensure the relevance and quality. The 
collected papers stem from an initial pool of 160 papers, identified through keywords related to 
additive manufacturing, 3D printing, parameter optimization, machine learning, and artificial 
intelligence. Following rigorous screening based on the title relevance and abstract assessment, 

100 papers are shortlisted. Ultimately, 50 reputable papers are carefully selected to form the core 
content of this review, ensuring a comprehensive exploration of the intersection between AM 
technologies and advancements in ML and AI. 

As shown in Figure 1(a), the data collection yields contributions from various reputable 
databases and platforms. Notably, 20% of the collected papers are from the Web of Science, 
reflecting a comprehensive exploration of interdisciplinary research within the scientific community. 

30% of the papers are sourced from Scopus for a broad representation of scholarly literature, 

emphasizing the significance of AM in engineering and technology disciplines. Additionally, 15% of 
papers are from IEEE Xplore, underscoring the importance of ML applications in advancing AM 
technologies. ScienceDirect provides another substantial portion, contributing 20% of the selected 
papers, demonstrating the platform wealth of research on AM and ML integration. Furthermore, 5% 
of papers are from PubMed, highlighting the emerging interest in biomedical applications of AM. 
Finally, 10% of the selected papers are from other databases and platforms, ensuring a 
comprehensive overview of the field. Through this careful selection process, we aim to provide 

readers with a comprehensive understanding of the intersection between AM process parameter 
optimization and ML.  

Figure 1(b) shows the distribution of the collected papers in years. It reflects a comprehensive 
exploration spanning the last seven years, highlighting the evolving landscape of AM research. With 
a notable surge in publications from 2022 onwards, comprising 17.78% of the total, followed by a 

dominant presence in 2023 and 2024, accounting for 46.67% and 20% respectively, it is evident 

that recent years have witnessed a substantial focus on AM advancements. The distribution 
underscores the significance of staying informed of the latest research developments in this rapidly 
evolving field, providing insights into emerging trends and areas of innovation.  

3 AM PARAMETERS 

AM parameters are critical for the part quality, structural integrity, and functionality, they should 
be carefully selected in the AM process. They have significant impacts on the 3D printing efficiency 
and overall quality of the manufactured part [4]. Meticulous control and optimization of these 

parameters are essential for advancing AM capabilities and applications, fostering continual 
evolution in quality assurance, design innovation, and manufacturing efficiency.  

AM techniques represent a significant advancement in modern manufacturing, offering versatile 

capabilities across various industries. Parameter optimization is a crucial aspect of AM processes, 
regardless of the specific technique employed. Factors such as gas circulation, energy source 
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characteristics (e.g., laser power or electron beam energy), scanning speed, and scanning strategy 
greatly influence the final properties and quality of printed parts. These parameters play a vital role 
in determining the structural integrity, surface finish, and dimensional accuracy of the 
manufactured components. Thus, meticulous adjustment and control of these parameters are 

essential for achieving optimal results and meeting the desired specifications in AM applications 
[19].  
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Figure 1: (a) Contribution of databases, (b) Paper distribution by publication years. 

 
Table 2 outlines the key parameters in AM, their definitions, and properties they affect. In AM 

processes, these parameters play crucial roles in determining the quality, properties, and efficiency 
of the AM process. For instance, the layer thickness dictates the resolution and building time of the 

printed object, with thinner layers typically resulting in finer details but longer printing time [20]. 
Printing speed influences both building time and surface roughness, as higher speeds can lead to 
smoother surfaces but may compromise part integrity. Temperature control is vital for ensuring the 
proper material adhesion and minimizing warping or distortion during printing [9].  
 

Parameter Definition Property Affected Reference 

Layer Thickness Thickness of each layer deposited 
during printing 

Surface finish, Resolution, 
Build Time 

[2,51,25,11] 

Printing Speed Speed at which the printing head 
moves during deposition 

Build Time, Surface 
Roughness, Warping 

[51,25,11] 

Temperature Temperature of the printing 

environment or material during 
printing 

Material Strength, 

Adhesion, Warping 

[51,25,11,33] 

Material 
Composition 

Composition of the material used 
for printing 

Mechanical Properties, 
Material Cost 

 

Infill Density Density of infill material inside the 
printed object 

Strength, Weight, Material 
Consumption 

[2,25,11] 

Cooling Rate Rate at which the printed object is 
cooled after deposition 

Warping, Cracking, 
Material Properties 

[31] 

Support 
Structure 

Additional material added to 
support overhanging features 
during printing 

Printability, Surface 
Finish, Time 

[44] 

Build 
Orientation 

Orientation of the printed object 
relative to the build platform 

Strength, Surface Finish, 
Warping 

[31,10] 

Nozzle 

Diameter 

Diameter of the nozzle used for 

material deposition 

Resolution, Extrusion 

Rate, Print Quality 

[46] 

Layer Adhesion Adhesion strength between Strength, Delamination, [45] 
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consecutive layers Surface Quality 

 
Table 2: Key AM parameters. 

  
Material composition directly affects the mechanical properties and cost of the final product, 
making the material selection a critical decision. Infill density impacts the part strength and weight, 

with denser infill providing a greater structural integrity but consuming more material [20]. Cooling 
rate affects the rate of solidification and can impact part properties such as warping and cracking. 
Support structures are necessary for printing overhangs and complex geometries but can affect the 
surface finish and printability. Building orientation influences the part strength, surface finish, and 
warping tendencies, while the nozzle diameter determines printing resolution and extrusion rate 
[22]. The layer adhesion strength is crucial for ensuring part integrity and preventing delamination 

between printed layers. Understanding and optimizing these parameters are essential for achieving 

desired outcomes in terms of the part quality, strength, surface finish, and production efficiency in 
AM processes. 

4 SELECTION OF AM PARAMETERS 

4.1 Traditional Methods 

Traditionally, engineers and researchers have relied on various conventional methods to determine 
optimal parameter settings for AM. These methods include Design of Experiments (DOE), Taguchi 
method, Response Surface Methodology (RSM), trial-and-error, and heuristic approaches. 

Design of Experiments (DOE) systematically varies parameters within predefined ranges to 
observe their effects on part quality and select optimal settings [22]. Taguchi method employs 

orthogonal arrays to efficiently explore parameter combinations and identify influential factors 
while minimizing experimental runs [32]. Response Surface Methodology (RSM) utilizes 

mathematical models to optimize parameters and predict part properties based on experimental 
data [47].  

In the trial-and-error approach, engineers manually adjust parameters based on empirical 
knowledge and experience, iteratively refining settings until satisfactory results are achieved. 
Similarly, the heuristic approach relies on rule-based systems or heuristics to guide parameter 
adjustments according to predefined rules or expert judgment [5]. 

While these traditional methods have been valuable to some extent in optimization, they are 

often labor-intensive, time-consuming, and limited in their ability to account for complex 
interactions between variables [30]. As the demand for efficient and effective parameter 
optimization in AM continues to grow, there is increasing interest in leveraging advanced 
techniques such as machine learning to automate and enhance the optimization process, offering 

greater efficiency, accuracy, and adaptability to changing manufacturing conditions [10]. 

4.2 Machine Learning in AM Parameter Selection 

Table 3 summarizes applications of ML in AM parameter selection and optimization. It shows that 
supervised ML predominates in ML applications due to its practicality despite the inherent 
complexities in AM processes hindering the full exploitation of ML potential. Other ML methods such 
as unsupervised ML and reinforcement learning (RL) have been explored. Unsupervised learning 
has been used for the defect detection [11], while RL has been employed for the toolpath 

optimization [31]. Furthermore, ML techniques have been applied to discern trends in high-
dimensional datasets and identify patterns within manufacturing processes, demonstrating 
potential across diverse applications [10].  

ML models, categorized as surrogate models, represent valuable tools for investigating non-
linearities and can yield favorable outcomes with simulated or empirical datasets alike [29]. 

Training data can tune ML models. The AM process is quite complex involving multiple factors and 

parameters. To tackle this complexity, significant resources have been allocated to create 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 22(5), 2025, 893-911 

© 2025 U-turn Press LLC, http://www.cad-journal.net 
 

899 

databases filled with data that can be used in ML systems. These ML systems combine modern data 
driven techniques with traditional physics-based methods to make predictions [30]. For ML models 
to perform effectively, they rely heavily on receiving appropriate training data. In the context of 
AM, the process can typically be broken down into three main steps, process design, material 

design and part design. Each of these steps present unique considerations for selecting the most 
suitable ML methods and algorithms, but here we will only focus on applications of ML for the 
parameter selection and optimization [31].  

Table 3 serves as a valuable reference for understanding the interaction between ML 
techniques, AM parameters, and resultant part qualities in the context of AM processes. It provides 
insights into how different ML algorithms can be leveraged to optimize AM processes and predict 
desirable part qualities, thereby contributing to advancements in AM technology. 

 

Parameters 
Observed 

ML 
Technique 

Target 
Property 

Cons Pros Ref. 

Infill 
percentage, 

layer height, 
infill pattern, 
& wall 
thickness 

KNN, SVM, 
DT, RF 

Mechanical 
Strength 

Linear relationship 
between the properties 

and parameter. 

Performs well for 
linear relationship of 

parameter and 
properties 

[2] 

Powder size KNN, RF Fatigue life   [6] 

Printing 

temperature, 

layer 
thickness, 
printing speed 

EL Strength, 

stiffness, 

ductility 

A change in one 

parameter can trigger 

negative change in 
another property 

Performs better within 

specific conditions 

[51] 

Fiber layers, 
concentric 
carbon-fiber 
rings, infill 

pattern 

EL Flexural 
strength 

Only limited to the 
given parameters 

The model is flexible 
to be adopted for 
predicting other 
properties 

[50] 

Nozzle 
temperature, 
printing 
speed, part 

cooling, part 
orientation 

DCT, RFR, 
extra tree 
regressor, 
random 

boosting 
regressor 

Young’s 
modulus, 
tensile 
strength 

Part orientation is 
dictated generally by 
part geometry 

The model can be 
applied to other AM 
techniques like FLM 

[33] 

Infill 

Percentage, 
Layer 
Height, Print 
Speed, 
Extrusion 
Temperature 

Logistic 

Classificatio
n, Gradient 
Boosting 
Classificatio
n, DT, KNN 

Ultimate 

tensile 
strength 

The study is limited to 

linear relationship 
between parameter 
and properties 

The study 

demonstrated the use 
of classification 
models. 

[30] 
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Location, 
orientation 

KNN, SVM, 
RF, DT 

Strain Limited range of 
targeted properties 

Better accuracy in 
prediction 

[10] 

Gas 
circulation, 
laser power, 
scan speed, 
scan angle 

Multi-
objective 
Bayesian 
optimizatio
n 

Surface 
roughness, 
microhardn
ess 

Performance is highly 
dependent upon 
quality of initial 
dataset 

It can be trained with 
smaller data 

[9] 

Laser power 
and scan 
speed 

LR, DTR, 
RFR, MLP 

Melt pool, 
density 

MLP is limited to power 
and speed in specific 
ranges 

MLP can predict the 
properties in the 
specific range of 

parameters 

[23] 

Laser power, 
scan speed, 
hatch spacing 
parameters 

NN Relative 
density, 
surface 
roughness, 

microhardn
ess 

Data quantity affects 
the performance of ML 
model 

Reduces 
preprocessing time 
and cost 

[43] 

Scanning 

velocity, laser 
power, hatch 
distance, layer 

thickness 

NN Fatigue life The study is limited to 

specific material 

Not limited to specific 

optimization problems 

[7] 

Nozzle 
temperature, 
printing 
speed, layer 

height 

LR, RF, 
LGBM, 
XGB, ANN 

Tensile 
strength 

Data variability due to 
data collection from 
different articles 

Using data from 
existed articles 

[11] 

Nozzle 
temperature, 
layer 
thickness, 

printing 

speed, wall 
thickness 

ANN, GA Surface 
roughness 

Ability to work with 
different ML techniques 

Validated the use of 
hybrid models 

[28] 

Laser power, 
scanning 
speed, hatch 
spacing, layer 

thickness, 
sample 
direction 

NN Yield 
strength & 
ultimate 
tensile 

strength, 
Elongation 

The study is based on 
data from literature 
and can be vulnerable 
to variance 

Laser power, scanning 
speed, hatch spacing, 
Layer thickness and 
sample direction. 

[27] 

Wire feeding 
speed, travel 
speed 

NN, GA Tensile 
strength 

High level of 
complexity 

Additional parameters 
can be included in the 
observation 

[45] 
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Print 
temperature, 
print speed, 

cooling fan 
speed  

NN Printable 
bridge 
length 

The study is limited to 
FDM 

The study claims to 
be the first study on 
PBL 

[18] 

Print speed, 
layer height, 
nozzle 
diameter, 
extrusion 
volume 

NN Material 
extrusion 

The study needs to be 
validated to be used 
for other parameters 

It can perform real-
time print 
optimization on other 
materials systems 

[38] 

 
Table 3: ML techniques used for AM parameter selection and optimization. 

 
Integration of ML holds promise to improve precision and efficiency of AM process through the 

optimization of critical parameters [16]. Recent research recognizes the potential of ML in 
optimizing process parameters for AM to predict the mechanical properties of AM parts. Based on 
the published research papers, the supervised machine learning method dominates ML applications 
in the AM parameter optimization [32]. 

Supervised ML can use Regression and classification models and Neural Networks for the AM 
parameters optimization. Regression models understand and quantify the relationship between one 
or more independent variables and a continuous dependent variable by analyzing historical data to 

predict future outcomes or understand changes in one variable to affect another [6], while the 

classification model categorizes data into predefined classes based on their features. The model is 
trained on labelled data sets, each of which is associated with a class label. The model identifies 
patterns and relationships within the data to accurately identify new unseen instances through the 
learning process [20]. 

Mechanical behavior analysis in AM searches solutions to improve the compressive strength 

and tensile strength of 3D printed components. Agarwal et al. investigated impact of the parameter 
optimization on the compressive strength of PLA-based surgical orthopedic cortical screws, utilizing 
parameters such as the infill percentage, layer height, infill pattern, and wall thickness [20]. The 
parameters were selected based on the targeted property to be predicted, for instance, the 
porosity of the printing structure is dictated by the infill density, and the height is defined by the 
layer thickness. Comparing K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision 
Tree, and Random Forest, the study revealed that Random Forest outperformed others in the 

parameter prediction. It found that the infill pattern and infill percentage are the most influenced 
parameters while the layer height being the least influential. KNN and RF ML models were used 

because of their simplification and the ability to handle complex and non-linear data [50].  
Mishra et al. also used KNN, DT, and logistic regression (LR) to predict the ultimate tensile 

strength of PLA [23]. They labelled the data with for the ultimate tensile strength less than 80%, 
and 1 for 80% and above. The study finds that KNN performs better. Another study also found KNN 
performing better in comparison to SVM, RF and DT in the prediction of strain in wire arc AM 

(WAAM) [43].  
To find a relation between the powder size and fatigue life using ML, a study collected data 

from simulation models to train ML models and make predictions. Although the study claims 
accurate results, large experimental data are required to validate the hypothesis. RF and 
regression ML models are also applied in PLA and PLA-CF (carbon fiber) by observing parameters of 
the printing temperature, layer thickness, and printing speed to predict strength, stiffness, and 

ductility [9]. Ensemble ML models are applied for predictions, a combination of weak learners 
(random forest, boosting methods, and regression models) and meta learner (multiple linear 

regression models). The predictions from the weak learners were used as training data for the 
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meta learner. Although the study claims the high accuracy of predictions, it is limited to a single 
material and a few parameters. Further research is needed to validate the effectiveness of the 
method.  

The concept of ensemble learning (EL) is also utilized to study three design factors of the fiber 

layer, fiber rings, and polymer infill pattern to predict the flexural strength [50]. Multiple linear 
regression (MLR), lasso regression, multivariate adaptive regression splines (MARS), generalized 
additive model (GAM), K-Nearest neighbor (KNN), support vector machines (SVM), random trees 
and gradient boosting algorithms are used in ensemble learning model. The study found that the 
model has an acceptable level of accuracy for prediction of flexural strength. To investigate effects 
of the nozzle temperature, printing speed, part cooling and part orientation on the tensile strength 
and young’s modulus of AM parts using ML models, decision tree regressor (DCT), random forest 

regressor (RFR), extra tree regressor, and random boosting regressor are also used [2]. The study 

found that orientation of the printed part has the greatest effect among all the parameters studied. 
However, it is pertinent to note that orientation of printing might be governed by the shape and 
design of the part to be printed.  

Multi-objective Bayesian optimization showed promising results for parameter optimization, but 
it still needs to be tested with broader parameters and materials. Similarly, in another study, LPBF 

techniques were studied by investigating the influence of laser power and scan speed on the part 
density [38]. The ML models, i.e. linear regression (LR), decision tree regressor (DTR), random 
forest regressions (RFR), and a multilayer perceptron (MLP) are applied. The results were 
compared for accuracy and found that MLP reported the best results, while RFR reported the lowest 
accuracy. It can be attributed to the small dataset. The study suggests that overall, ML can be 
used for predictions but limitations of LR for only predicting the linear relationship. DTR can be 
vulnerable to overfitting, RFR is vulnerable to errors due to the lack of enough data. The study 

concluded that it is not advisable to solely rely on ML predictions. The findings of this study were 
based on limited data, which requires big data for improvement. 

Relationships between the nozzle temperature, printing speed, and layer height were observed 
for the tensile strength of PLA using different ML algorithms including LR, RF, light gradient Boost 
(LGBM), extreme gradient boosting (XGB), and ANNs [33]. It was found that the high infill density 
and low printing speed are effective parameters for the tensile strength. Among the ML algorithms, 
XGB presented the best results [33].  

Neural Networks are computational models inspired by the structure and function of the human 
neurons [39]. They consist of interconnected nodes organized in layers, including input, hidden, 
and output layers. Each node (neuron) receives input signals, processes them using an activation 
function, and passes the result to the next layer. Neural networks learn from data through a 
process called training, where the model adjusts its weights and biases to minimize the difference 
between predicted and actual outputs. This optimization process is typically achieved using 

techniques like gradient descent and backpropagation [39]. 
A singular neural network can forecast the surface roughness, microhardness, and dimensional 

accuracy by optimizing the laser power, scan speed, and hatch spacing parameters [40]. The study 
observed that the predictions made by Artificial Neural Networks (ANNs) aligned with the testing 
data, however, it also shows the model sensitivity to the quantity of provided data. Despite 
reporting the commendable performance, a notable limitation of the study is its capacity to predict 
only one property at a time, lacking the capability to predict multiple parameters.  

Neural networks can also be integrated with the physics knowledge to study effects of AM 
parameters like the scanning velocity, laser power, hatch distance and layer thickness on the 
fatigue life of printed parts [7]. A study observed the efficiency of AN against XGB, RF and LR, and 
XGB outperformed ANNs [33]. ANNs can also be used in a hybrid model with genetic algorithm 
(GA) to study effects of the nozzle temperature, layer thickness, printing speed, and wall thickness 
on surface roughness in FDM. The study found out that GA outperformed ANNs in parameter 
optimization [42]. Parameters like print speed, print temperature and fan speed also affect the 

printable bridge length (PBL). Using ANNs, a study found that lower print temperature and speed 

with high fan speed have positive impact on PBL [18].  
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ANNs have versatile applications in AM parameters optimization, such as optimizing parameters 
for LPBF laser power, scanning speed, hatch spacing, layer thickness and sample direction to 
observe their effects on yield strength, ultimate tensile strength, and elongation [27]. The study 
found that all parameters equally affected the targeted properties. Tensile strength was predicted 

by optimizing wire feeding speed and travel speed with high accuracy using ANNs with GA [45]. A 
study observed the printing speed, layer height, nozzle diameter, and extrusion volume against the 
optimal material use for FDM [38].  

Table 4 presents a comprehensive overview of supervised ML techniques to predict AM part 
qualities by optimizing corresponding AM parameters. ML techniques are applied for specific AM 
parameters, along with the AM part qualities that can be predicted using these parameters. For 
instance, Linear Regression is associated with parameters like layer thickness, printing speed, 

temperature, and material composition that can influence qualities such as surface finish, strength, 

and build time [23]. Similarly, other ML techniques such as Decision Trees, Random Forest, 
Support Vector Machines (SVM), Logistic Regression, K-Nearest Neighbors (KNN), Gradient 
Boosting, Naive Bayes, MLP (Neural Network), and Neural Networks are aligned with relevant AM 
parameters and part qualities. 

ML models can serve both predictive and optimization purposes, each addressing different 

aspects of problem-solving. Predictive ML models, such as regression [33] and classification 
algorithms [30], are trained on historical data to forecast future outcomes or classify new instances 
based on learned patterns. These models excel in identifying relationships between input features 
and output targets, enabling accurate predictions of properties or behaviors in various applications. 
On the other hand, optimization-focused ML models aim to determine the best set of input 
parameters that maximize or minimize a specific objective function. Techniques like GA [28] or 
Bayesian Optimization (BO) [9] systematically search the parameter space to find optimal 

configurations that yield the desired results. 
Predictive models play a crucial role in the optimization and selection of parameters by acting 

as surrogates or guides in the optimization process. Initially, a predictive model is developed to 
understand how different input parameters influence the desired outcomes. Once this model is 
trained, it can be used to predict the performance of various parameter combinations without the 
need for exhaustive experimentation or simulation [10]. Optimization algorithms can then leverage 
these predictions to efficiently explore the parameter space, focusing on the most promising 

regions. For example, BO utilizes the predictive model to estimate the objective function and 
guides the selection of new parameter sets to evaluate, iteratively refining the search towards 
optimal solutions [9]. Thus, predictive models provide a foundational understanding for more 
efficient and effective optimization, leading to the identification of optimal parameters that achieve 
the desired performance outcomes. 
 

Supervised ML 

Technique 

AM Parameters Optimized AM Part Qualities to 

Predict 

Ref. 

Linear 
Regression 

Layer Thickness, Printing Speed, 
Temperature, Material 
Composition 

Surface Finish, Strength, 
Build Time 

[23] 

Decision Trees Layer Thickness, Infill Density, 
Support Structure, Build 
Orientation 

Strength, Surface Finish, 
Printability 

[10] 

Random Forest Printing Speed, Material 
Composition, Cooling Rate, 

Nozzle Diameter 

Material Properties, 
Surface Finish, Warping 

[2] 

Support Vector 
Machines (SVM) 

Temperature, Layer Adhesion, 
Support Structure, Build 

Orientation 

Material Strength, 
Surface Finish, 

Printability 

[20] 
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Logistic 
Regression 

Material Composition, Support 
Structure, Build Orientation 

Printability, Material 
Properties, Surface Finish 

[11] 

K-Nearest 
Neighbors 
(KNN) 

Layer Thickness, Printing Speed, 
Temperature, Cooling Rate 

Build Time, Surface 
Finish, Material Strength 

[30,10] 

Gradient 
Boosting 

Layer Thickness, Material 
Composition, Printing Speed, 
Cooling Rate 

Material Properties, 
Surface Finish, Warping 

[11] 

Naive Bayes Material Composition, Layer 
Adhesion, Support Structure, 

Build Orientation 

Material Properties, 
Printability, Surface 

Finish 

[9] 

MLP (Neural 

Network) 

Layer Thickness, Printing Speed, 

Material Composition, Infill 
Density 

Strength, Surface Finish, 

Material Properties 

[23] 

Neural 
Networks 

Layer Thickness, Printing Speed, 
Material Composition, Infill 
Density 

Strength, Surface Finish, 
Material Properties 

[7,18,27,28,38,
45] 

 

Table 4: Supervised ML techniques for AM parameter selection and optimization. 

5 CHALLENGES IN THE PARAMETER SELECTION USING ML 

5.1 Trade-Offs in the Parameters Selection  

Selecting an appropriate set of parameters is crucial for optimizing the AM performance using ML 

models. Each AM parameter can have a distinct impact on specific properties of the printed part. 
For example, increasing the layer thickness and printing speed will reduce the printing time but 
could compromise the surface finish [20,9]. Additionally, refining porosity in Powder Bed Fusion 
(PBF) processes can influence surface roughness. It is essential to carefully select parameters for 
desired properties while considering potential trade-offs between different aspects of the part 
quality [19]. 

5.2 ML Model Selection 

The relationship between parameters and the target property is indeed pivotal in selecting an 
appropriate ML model for AM applications. Understanding the nature of this relationship is essential 
for achieving accurate predictions and optimizing part properties effectively. Linear regression 
models, such as the simple linear regression, are suitable when the relationship between 

parameters and the target property is linear and can adequately capture the trend in the data [20]. 

However, in cases where the relationship is nonlinear or complex, more sophisticated regression 
models, such as the polynomial regression, spline regression, or neural networks, may be 
necessary to accurately model the underlying patterns and variations in the data [40]. 

Moreover, it is important to consider the inherent complexity of AM processes and the 
multidimensional nature of the parameter space. AM parameters often interact in nonlinear ways, 
leading to complex and sometimes unpredictable effects on part properties [9]. Therefore, 

employing advanced regression models to capture nonlinear relationships and interactions among 
parameters can be beneficial for achieving more accurate predictions in AM. Additionally, feature 
engineering, which involves transforming and selecting relevant features from the input data, plays 
a crucial role in the ML model selection and optimization. By carefully engineering features and 
considering the domain-specific knowledge, we can enhance the performance of ML models and 
improve their ability to capture nuances of AM processes. 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 22(5), 2025, 893-911 

© 2025 U-turn Press LLC, http://www.cad-journal.net 
 

905 

5.3 Data Quantity and Quality 

ML models heavily rely on data to learn patterns and make accurate predictions. However, the 

quantity of data available for training ML models in AM can often be limited due to factors such as 
the high cost and time associated with experimentation, especially in research and development 
settings [43]. Insufficient data can lead to overfitting, where the model learns the noise and 
variations in the training data rather than the underlying patterns, resulting in poor generalization 
to new data. Moreover, the quality of the data is equally important as the quantity. Inaccurate, 
incomplete, or poorly preprocessed data can introduce biases and errors into the ML model, 

negatively impacting its performance. When the precision and reliability are paramount in AM, 
ensuring the accuracy and integrity of the data is crucial for producing reliable predictions and 
optimizing process parameters effectively [19,20]. Data preprocessing techniques, such as outlier 
detection, normalization, and feature scaling, are essential for cleaning and preparing the data 

before training ML models. Additionally, domain-specific knowledge and expertise are invaluable for 
identifying relevant features and eliminating irrelevant noise from the data. 

To further address the issue of limited and high-quality data, modern data-processing 

techniques such as data augmentation, transfer learning, and data-physics combinations can be 
employed [30]. Data augmentation techniques which involve generating synthetic data or 
modifying existing data can help increase the dataset size and diversity, thereby reducing 
overfitting and improving model robustness. Transfer learning allows for leveraging pre-trained 
models on large datasets from related domains, which can be fine-tuned for specific AM tasks, 
effectively mitigating the need for extensive labeled datasets. Combining data-driven approaches 
[48] with physics-based models also enhances data quality and model accuracy by incorporating 

fundamental principles governing AM processes, ensuring that predictions align with physical 
realities. 

6 DISCUSSION 

The selection of an appropriate ML model depends on relationships between parameters and target 
properties in AM. Understanding this relationship, leveraging advanced regression techniques, and 
incorporating domain-specific insights are essential for building robust and accurate ML models for 

the AM parameter selection and optimization. 
Addressing challenges of the data quantity and quality in AM requires a considerable effort to 

collect, curate, and preprocess data systematically. Collaborative efforts between researchers, 
engineers, and domain experts are essential for acquiring high-quality data sets that accurately 
represent the intricacies of AM processes. Furthermore, investing in data infrastructure and 
technologies, such as data management systems and data analytics tools, can facilitate efficient 
data collection, storage, and analysis, ultimately enhancing the performance and reliability of ML 

models in AM applications.  

The efficacy of ML lies in the quality of the data utilized for training the ML model. ML models 
can only perform as effectively as the data quality [47]. The selection and optimization of 
parameters for AM using ML techniques offers a promising avenue for improving manufacturing 
processes and product quality. Based on the comprehensive overview of the advantages and 
disadvantages associated with various ML techniques commonly employed in AM [49], main 
features of ML techniques for the AM parameter selection and optimization are identified in Table 5 

as follows. 
 

• Linear Regression emerges as a straightforward method capable of capturing both linear and 

nonlinear relationships between parameters. However, its limitations include assumptions of 

linearity and vulnerability to overfitting, particularly with small datasets. Decision Trees offer 

interpretability and flexibility but are prone to overfitting and instability, especially with deep 

trees. 
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• Random Forest, a popular ensemble method, mitigates overfitting by averaging multiple trees 

but is computationally expensive and lacks transparency due to its ensemble nature. Support 

Vector Machines exhibit effectiveness in high-dimensional spaces but may suffer from 

overfitting and slow training times with large datasets. 

• Logistic Regression provides simplicity and interpretability but is constrained by linear decision 

boundaries and susceptibility to overfitting. K-Nearest Neighbors offers simplicity but requires 

careful selection of parameters and suffers from computational expense during the prediction 

phase. 

• Gradient Boosting demonstrates high predictive accuracy but requires extensive computational 

resources and is sensitive to overfitting. Naive Bayes is simple and fast but assumes 

independence between features, which may not hold true in practice. 

• MLP (Multilayer Perceptron) Neural Networks and traditional Neural Networks excel in capturing 

complex nonlinear relationships but are prone to overfitting and computational expense, 

particularly with large datasets and complex architectures. Despite their challenges, these 

neural networks-based approaches hold promise for optimizing AM parameters due to their 

ability to learn from large datasets with many features. 

 
Advantages Disadvantages 

Linear 
Regression 

• Capture linear and nonlinear 
relationships between parameters. 

• Suitable for optimizing continuous 

AM parameters such as layer 
thickness or printing speed. 

• Can provide insights into the 
impact of individual parameters on 

AM outcomes 

• Assumes linear relationship 
between parameters. 

• Sensitive to outliers and 

multicollinearity. 
• May not capture complex nonlinear 

relationships well. 
• Vulnerable to overfitting, especially 

with small datasets 

Decision Trees • Can handle both numerical and 

categorical data. 
• No need for data normalization. 
• Easy to interpret and visualize 

decision boundaries 

• Prone to overfitting, especially with 

deep trees. Instability due to small 
variations in data. 

• High variance, leading to 
overfitting. 

• Can create biased trees if features 
with more levels are favored. 

Random Forest • High accuracy and robustness. 
• Reduces overfitting by averaging 

multiple trees. 
• Low risk of overfitting due to 

ensemble approach. 

• Handles high-dimensional data 

well 

• Complexity and computational 
cost. 

• Lack of transparency due to 
ensemble approach.  

• Computationally expensive, 

especially with large datasets and 

many trees. 
• Not suitable for interpretability 

Support Vector 
Machines 

• Effective in high-dimensional 
spaces. 

• Effective in high-dimensional 

spaces. 
• Works well with small and 

medium-sized datasets 

• Prone to overfitting if the kernel 
parameters are not properly 
selected. 

• Slow training time with large 
datasets. 

• Limited effectiveness with noisy 
datasets 
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Logistic 
Regression 

• Simple and interpretable model.  
• Suitable for binary classification 

tasks. 

• Easy to implement and understand 

• May not perform well with 
nonlinear relationships. 

• Limited to linear decision 

boundaries. 
• Vulnerable to overfitting, especially 

with small datasets 

K-Nearest 
Neighbors 

(KNN) 

• Simple and intuitive algorithm. 
• No training phase required. 

• Suitable for small to medium-sized 
datasets 

• Computationally expensive 
prediction phase. 

• Sensitive to irrelevant features and 
noise in the data. 

• Requires careful selection of 
distance metric and k value 

Gradient 
Boosting 

• High predictive accuracy. 
• Handles missing data and outliers 

effectively. 
• Suitable for large datasets with 

high dimensionality 

• Computationally expensive and 
time-consuming training. 

• Prone to overfitting, especially with 
deep trees. 

• Sensitive to hyperparameter 
tuning 

Naive Bayes • Simple and fast algorithm. 

• Handles high-dimensional data 
well. 

• Performs well with small datasets 

• Assumes independence between 

features, which may not hold true 
in practice. 

• May not perform well with highly 
correlated features. 

• Cannot capture complex 
relationships between variables 

MLP (Neural 
Network) 

• Ability to capture complex 
nonlinear relationships between 
parameters. 

• Suitable for both regression and 
classification tasks. 

• High flexibility in model 
architecture 

• Prone to overfitting, especially with 
small datasets. 

• May not perform well with highly 
imbalanced datasets. 

• Computationally expensive, 
especially with large datasets and 
complex architectures. 

• Difficult to interpret and 
understand the learned 
representations. 

Neural 
Networks 

• Capture complex nonlinear 
relationships between parameters. 

• Suitable for complex optimization 

tasks involving multiple AM 
parameters. 

• Ability to learn from large datasets 
with many features 

• Prone to overfitting, especially with 
small datasets. May not perform 

well with highly imbalanced 

datasets. 
• Computationally expensive, 

especially with large datasets and 
complex architectures. 

• Difficult to interpret and 
understand the learned 

representations. 

 
Table 5: ML techniques and their pros and cons 

7 CONCLUSIONS  

In conclusion, while each ML technique presents unique advantages and disadvantages, the 

selection of the most suitable algorithm for AM parameter optimization hinges on factors such as 
the dataset size, process complexity, and interpretability. Future research should focus on the 
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hybrid approaches, combining strengths of multiple ML techniques to overcome individual 
limitations and enhance the parameter selection and optimization in AM. As AM continues to 
evolve, there is a need for tailored ML algorithms to address emerging challenges, fostering 
innovation and efficiency in manufacturing. Collaborative efforts between academia and industry 

are vital for advancing ML-based approaches, ultimately shaping a more efficient and sustainable 
future for additive manufacturing. 
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