
912

Multi-GPU Accelerated Software Tool for Virtual Hand Repositioning

Adam Gorski1 , O. Remus Tutunea-Fatan2 , Louis M. Ferreira3

1Western University, agorski3@uwo.ca
2Western University, rtutunea@eng.uwo.ca

3Western University, lferreir@uwo.ca

Corresponding author: O. Remus Tutunea-Fatan, rtutunea@eng.uwo.ca

Abstract. The progress of additive manufacturing and scanning technologies has made the
use of 3D printed splints in clinical settings increasingly practical. However, certain obstacles
continue to impede the wider adoption of this fabrication avenue. More speci�cally, one of
the main challenges is constituted by the di�culties encountered by some of the patients while
attempting to reach prede�ned �nger positions. In case of traditional thermoplastic splints,
physiotherapists can manually adjust patient's �ngers while the splint material molds to their
hand. This direct adjustment is not possible when 3D scanners are used since any physio-
therapist intervention would disrupt the scanning process and thereby invalidate the acquired
data. Although some patients are capable of holding their �ngers in predetermined positions,
many who su�er from injuries lack the ability to do so. This signi�cantly complicates the
acquisition of high-quality 3D scans.

The current study showcases a joint repositioning tool based on �nite element analy-
sis (FEA), equipped with advanced algorithms for generating real-time joint repositioning
outcomes. This tool employs a specialized multi-GPU accelerated solver to swiftly carry
out mesh voxelization and solve the �nite element system for a geometrically complex hand
model. Furthermore, the �nite element solver is meticulously optimized to reduce both time
and memory consumption, ensuring that diverse systems can achieve rapid performance in
joint repositioning.

Keywords: Hand Kinematics, Splint Generation, Finite Element Method, Multi-GPU Paral-
lelization
DOI: https://doi.org/10.14733/cadaps.2025.912-926

1 INTRODUCTION

Physiotherapist commonly use splints to immobilize and stabilize limbs to accelerate patient healing and
recovery. In the context of hand splints, advancements in scanning and 3D printing technology allow for cheap

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://orcid.org/0009-0004-4429-8256
http://orcid.org/0000-0002-1016-5103
http://orcid.org/0000-0001-9881-9177
mainto:agorski3@uwo.ca
mainto:rtutunea@eng.uwo.ca
mainto:lferreir@uwo.ca
mailto:rtutunea@eng.uwo.ca
http://www.cad-journal.net


913

[2] splints that can potentially better capture the curvature of hands. While software tools to create splints
from hand scans were already developed [6] and low cost 3D printers [23] and scanners [20] have eliminated
many barriers towards the wide scale adoption of this technology, few obstacles continue to exist.

The creation of digital splints faces ongoing hurdles, especially during the non-contact scanning of hands
for �nger positioning. Traditionally, physiotherapists manually adjust patient's �ngers during splint molding
or setting process in order to achieve optimal positions for hand recovery. However, many patients struggle
to hold �nger positions on their own. This challenge is exacerbated when non-ionizing 3D scanners (laser
or photogrammetry type) are used to digitize patient's hand. These devices cannot capture any part of the
hand that is obscured from their sensors. This includes interference from physiotherapist's hands and/or
body during positioning. These occlusions can lead to incomplete data, potentially compromising the utility
of the hand scan. Alternative methods, including the use of thin wires to position �ngers, exist but can be
cumbersome, uncomfortable for the patient, and time-intensive to set-up. Because of this, when non-contact
scanning solutions are used, �ngers have to be repositioned prior to entering the splint design process.

Finite element analysis (FEA) stands out as a promising method for digitally adjusting the position of
�ngers. To this end, commercial FEA software is capable of implementing displacements, as noted in the
literature [8]. However, these platforms often lack intuitiveness and interactivity, primarily because they
cater to a broad spectrum of engineering needs. Typically, in such scenarios, the required displacements are
predetermined, eliminating the need for on-the-�y adjustments. As a result, solving for the desired outcomes
can consume a substantial amount of time. This is in stark contrast to the practices of physiotherapists, who
prefer to iteratively modify the positioning of �ngers until it aligns with their empirical clinical judgments.

To address the aforementioned shortcomings, this study introduces a specialized software for virtual joint
repositioning, built on �nite element analysis (FEA) and tailored for the needs of the physiotherapists. The
developed software tool is equipped with a straightforward, step-by-step interface aimed at guiding those
without technical expertise through the process of joint repositioning. The software tool works as an indepen-
dent application and leverages graphics processing unit (GPU) parallelization to expedite the solution-�nding
process. Special emphasis is placed on optimizing meshing and solving algorithms to reduce computational
time and enhance user experience. Custom algorithms were developed to address issues encountered with
GPU-accelerated meshing and solving. These include eliminating the need for sparse matrix assembly by using
matrix-less solving approaches. Given that large FEA models demand substantial memory and GPUs typically
have less memory than CPUs, the matrix-less approach and memory-less preconditioner enable the use of much
higher mesh resolutions. Furthermore, the software bene�ts from the utilization of multiple GPUs or OpenCL
computing devices in order to facilitate real-time interaction, thus enhancing its practicality for clinical use.

2 PROCESSING WORKFLOW

The process of repositioning joints is divided into four distinct stages, with each stage leading linearly to the
next. However, the �nal two stages are designed to be employed concurrently to �ne-tune the joint angles.
Additionally, the software allows for the simultaneous loading of multiple models, enhancing its versatility. The
typical processing work�ow (Fig.1) consists of the following steps:

1. Geometry loading: user loads a 3D model of the hand and con�rms its scale.

2. Joint placement: user sequentially select joints, manually positioning them or placing them by clicking
on the virtual hand model. An automatic placement feature is also available.

3. Joint rotation: user relies on rotation tools to adjust the virtual bones of the model in order to their
correct positions.

4. Angle veri�cation: software calculates the angles between speci�c joints to enable the application of
precise recovery angles within the model.

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


914

(a) (b) (c)

(d) (e) (f)

Figure 1: Typical work�ow: (a) geometry loading, (b) joint placement, (c) joint adjustment, (d) joint
repositioning, (e) inspection, and (f) angle veri�cation.

2.1 Geometry Loading

The initial step requires the user to import the model's geometry by selecting a mesh �le for import and
con�rming its dimensions. Additional checks are in place to validate the dimensions of the imported model.
The size of the bounding box of the mesh is displayed for a facile reference.

2.2 Joint Placement

This stage entails adding virtual joints to the digital model. This process can be executed using a raycast
method according to which a ray is projected onto the model, and the midpoint of two intersection points is
designated as joint's location. Another method involves adjusting joints' positions using translation controls.
Furthermore, an automated tool for joint placement was also included in the software tool. This approach
aims to identify accurate joint positions by analyzing the curvature of the input mesh.

2.3 Joint Rotations

The last phase involves adjusting the bones to align with their intended targets. Included in each joint is a tool
for rotational control, enabling precise adjustments of the bone angles. This rotational control can operate in
either a local or global mode. In local mode, the rotational axes align with the bone itself, whereas in global

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


915

mode, the axes correspond with the overall coordinate system (Fig.2). When the auto run mode is activated,
the software automatically processes the model after it has been repositioned.

(a) (b)

Figure 2: Joint angle control options: (a) local and (b) global

2.4 Angle Veri�cation

During this stage, users have the opportunity to check the angles between joints, as physiotherapists frequently
target precise angles for therapeutic purposes.

3 IMPLEMENTATION

The software employs OpenGL for graphical rendering and utilizes CUDA and OpenCL for computational tasks.
Custom-written wrappers for OpenCL, OpenGL and CUDA ensure optimal performance. The user interface
is developed using WinForms, while user interaction with the 3D scene is facilitated through raycasting and a
click bu�er. The core of the tool is programmed in C#, with the Advanced Vector Extension (AVX)-256 solver
implemented in C/C++. This application operates independently, eliminating the need for external plugins
or libraries. Automatic joint placement is achieved by using hashmaps to identify adjacent triangle edges and
an iterative search algorithm to cluster areas of low curvature. These areas are then removed from the overall
model to pinpoint regions of high curvature, through which the software plans the path for bones. Internal
bone rotation controls are matrix-based, and quaternion-based spherical interpolation is employed for realistic
joint positioning during each step of the �nite element load. While certain simpli�cations - such as using
basic bone structures or material data - were implemented to enhance performance, these are not expected to
signi�cantly impact the analysis of displacements that represents the primary focus of the developed software
tool.

3.1 GPU Mesher

In constructing �nite element meshes, Delaunay triangulation is often favored for producing meshes that exhibit
good Jacobian ratios. However, rapidly creating meshes through Delaunay triangulation poses a challenge,
particularly because, in the best-case scenario, it is an O(Nlog(N)) operation, even when employing the divide-
and-conquer strategy [13]. Parallelized versions also exist [3] but in more general terms the parallel processing
capabilities o�ered by voxelization - that relies on a grid-based approach - are di�cult to match.

Upon importing a model, the �nite element mesh can be calculated and saved. However, in many instances,
repositioning leads to such signi�cant distortions of the elements that the isoparametric mapping becomes
ine�ective when recalculating element sti�ness for geometrically non-linear solutions. To address this issue,
the �nite element solver is required to remesh at each load step interval, rendering the storage of any prior

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


916

meshes bene�cial only for the initial load step. Storing the mesh beforehand could be a feasible option for
geometrically linear solutions. Yet, given the substantial displacements observed in the �nite element model,
incorporating geometric non-linearity is essential.

Unfortunately, voxelized meshes (Fig. 3a) require very high resolutions for good surface accuracy since
the hexahedral elements cannot accurately model a smooth surface. Additionally, lower resolutions result in
volume gain or losses that can arti�cially shrink or expand the model. When multiple remeshes are performed,
this error becomes very apparent. To solve these issues, a voxel based mesh with single contouring was used
to generate a smoother mesh (Fig. 3b). Unlike dual contouring methods [17] that are more accurate for
sharp edges, human hands tends to have no sharp corners and this makes the single contouring method ideal.
The underlying algorithm is similar to the marching cubes algorithm [15], however a special emphasis has to
be introduced to generate more accurate meshes. The single contour mesh generator also supports directly
adding tetrahedron elements to the mesh, or alternatively interpolating the edge data based on a more loose
voxelization approach. The former method yielded more accurate results, while the latter approach was faster.
The meshing algorithm is depicted in Fig. 3.

(a) (b) (c)

Figure 3: Meshing techniques: (a) regular voxel mesh, (b) voxel mesh data interpolation and (c) single
contour mesh

The initial step involves computing the bounding box of the target object. This is done via parallel reduction
on the GPU. After that, each object in the FEA system must be voxelized. The GPU voxelizer does this by
shooting a grid of rays into into the mesh at 3 di�erent angles such that it can determine the interior and
interpolation values at each ray entrance and exit. Theoretically, this process could be further optimized by
using the dedicated ray-tracing cores on the GPU [9], however this would place restrictions on the hardware
to be used and this was regarded as undesirable. Moreover, a greater focus was given to enhancing the �nite
element solver because this is often the primary bottleneck in the process. It is also important to mention that
after completing the voxelization, the �nite element solver has the capability to operate directly on the voxel
data. This approach could reduce the time spent on meshing, but it would eliminate the contouring system
that mitigates volume gain and loss e�ects. Additionally, this method would lead to performance and memory
challenges that are detailed further in section 3.2.

The subsequent phase is dedicated to creating the mesh data, a task executed entirely on the GPU, except
for the node ordering and assignment phase, which is handled by the CPU. The use of addition and atomic
counters is minimized because their extensive use results in diminished performance. [7, 4]. Assigning node
stages could also be carried out on the GPU but this approach would lead to randomized node patterns. Such
patterns would adversely impact the distribution of work across multiple GPUs and necessitate substantial use
of atomic compare-and-exchange operations that would detrimentally in�uence performance.

This approach is similar to the one used for generating �nite element meshes from computerized tomography
(CT) data [5] however, this approach relies heavily on extra interpolation, and o�oads almost the entirely

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


917

Mesh Triangles [GPU]
Bounding Box

[GPU]
Voxelization

[GPU]
Node Assignment

[CPU]
Node Ordering

[GPU]
Element Assignment

[GPU]
FEA Solver

[GPU]
Face Interpolation

[GPU]
Smoothing

FOR 0,...,N LOADSTEPS

Figure 4: GPU accelerated meshing

of the workload onto the GPU. As noted earlier, the single contouring interpolation is necessary as voxelized
hexahedron meshes tend to su�er from volume gain or loss, which depends on the voxelization tolerance. The
complete �owchart of the solver is illustrated in Fig. 4.

3.2 GPU FEA Solver

The �nite element solver selected for implementation is based on the Galerkin element formulation and relies
on the penalty method for its boundary conditions. The Lagrange method was also considered since it is
characterized by a superior stability in case of certain applications [18, 21], but the former method was just
found to be easier to implement. Isoparametric mapping wa used to compute the local sti�nesses of each
element. The setup only uses three materials: bone, muscle and joints. To keep the model simple, each
material was assumed to be isotropic and characterized by Poisson's ratio of 0.3. The individual Young's
moduli for the bone, muscle and joints are 20 GPa, 100 kPa and 5 kPa, respectively. While it was previously
suggested that the skeletal muscle has a sti�ness of around 24.7 kPa [16], a sti�ness of 100 kPa was used in
the current work to ensure a faster convergence. Ideally, joint sti�ness should have been set to 0, but since
this value leads to singularities, a non-zero value was used again for faster convergence purposes. Finally, bone
sti�ness values were taken from [10] since they represent good approximations.

After calculating all element sti�ness, the solver proceeds by either directly computing the solution through
a matrixless method or by employing a conventional block sparse technique to solve the system. Of note,
meshless methods are viable since they can directly utilize the voxelized data from the GPU. [14]. Regrettably,
this method demands considerably more memory due to a substantial rise in idle degrees of freedom within
the �nite element, which serve no purpose other than occupying space in the solving vectors. As a result,
block sparse matrix and matrixless solvers were alternately employed to address the computational needs of
the �nite element model.

To quickly solve the large �nite element system, the preconditioned conjugate gradient (PCG) method
was selected primarily owed to its fast solving time, good memory usage as well as ease of implementation
[19]. Since the PCG method only necessitates a matrix-vector multiplication, various specialized strategies can
be adopted to streamline and expedite the computation. Both block Jacobi and Jacobi preconditioners were
evaluated. However, block Jacobi preconditioners were found to enhance convergence e�ciency, as evidenced
by fewer iterations required during testing with the block Jacobi preconditioner. The principal drawback of
block Jacobi resides in that it requires the sparse matrix-based solver to allocate three extra rows of vectors
to store the preconditioner. This leads to a 1.75-fold increase in memory consumption for the PCG algorithm
alone. Fortunately, the preconditioner can be generated dynamically, o�ering a memory-saving advantage
albeit at the expense of the performance. The PCG algorithm used is detailed in Algoritm 1. The algorithm
utilizes a tolerance level of 0.0001 and operates within a convergence window of 16 iterations. Double precision
is adopted for the solver to mitigate the impact of round-o� errors, which can signi�cantly hinder achieving
the set tolerance and result in a substantial rise in the number of iterations needed. Testing revealed that
using single precision a�orded only a twofold speed boost for dot product calculations, yet it necessitated a
markedly higher number of iterations to reach acceptable convergence levels.

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


918

Algorithm 1 Preconditioned Conjugate Gradient

Input: A, b, tol

rk ← b
pk ←M−1rk
βold ← pk · rk
w ← Apk
α← βold/(pk · w)
xk ← αpk
rk ←rk − αw

while rk · rk> tol2 do
w ←M−1rk
β ← rk · w
pk ← w + (β/βold)pk
w ← Apk
α← β/(pk · w)
xk ← xk + αpk
rk ← rk − αw
βold ← β

end while

To achieve rapid GPU computation, the PCG algorithm incorporates parallel reduction alongside local
synchronization. Performance evaluations were conducted using both OpenCL and CUDA frameworks, with
no signi�cant di�erence in e�ciency observed between them. While both utilized workgroup/block reduc-
tion techniques, CUDA additionally leveraged warp level primitives. Nonetheless, despite these warp level
optimizations, there was no noticeable impact on performance outcomes.

The sparse matrix solver operates similarly to a conventional �nite element solver, with the distinction
that its column indices are condensed into 3x3 blocks, treating each block as a single entry. In contrast, the
matrixless solver operates by moving directly from node to element to node, thereby utilizing signi�cantly less
memory. For processing each sparse matrix block row, the matrix-based solver employs 32 work-items/threads,
whereas the matrix-less approach requires only one work-item/thread per block row. Additionally, the matrix-
less solver maintains a separate table of local sti�ness matrices, which it integrates into the system dynamically.
Table 1 illustrates the solver iteration rate. Since not all modes are supported by each device, N/A is used
as the placeholder. It can be observed how the switch to a memory optimized model greatly boosts GPU
performance, but has little e�ect on the CPU.

AVX-256 GTX 1080 Ti RTX 3060 Ti

Sparse Block Matrix N/A 121.1 129.0

Matrix-Less 32.0 102.3 92.5

Matrix-Less Optimized 31.2 138.8 154.4

Table 1: Averaged iteration rates associated with various solvers (iterations/sec)

In addition to its primary capabilities, the solver o�ers a fallback to CPU with support for 256-bit wide
Advanced Vector Extensions (AVX). This feature di�ers from the standard matrixless solver as the optimized
version ensures vectors from overlapping node indices are loaded just once. This approach yields a signi�cant

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


919

boost in performance.

3.3 Multi-GPU Optimization

As the resolution increases, solving large �nite element systems becomes progressively more time-consuming,
making the development of a scalable multi-GPU �nite element solver increasingly vital. In a multi-GPU PCG
algorithm, there are three critical points of synchronization. Two of these points entail the main thread aggre-
gating the dot product calculations from two GPUs. The third synchronization point requires the exchange of
data between GPUs, a step essential for ensuring each GPU has access to pk data from nodal areas beyond its
designated range. For instance, Fig. 5a demonstrates a �nite element mesh consisting of quad elements and
nodes. The mesh is divided nodally across two GPUs. Nodes that are exclusively managed by one GPU but
are linked through an element to nodes managed by another GPU necessitate the sharing of values during the
matrix vector multiplication stage of the PCG algorithm. To address this challenge, nodes needed by each GPU
are marked in a shared global bu�er. Subsequently, each GPU examines this bu�er to identify if it possesses
any of the marked nodes. The nodal data is then organized such that any data required for import by a GPU
is positioned at the end of its local bu�er, with data to be exported placed adjacent to it. This optimization is
shown in Fig. 5b. By ensuring that the data for import and export is organized sequentially, the process not
only facilitates the transfer of the entire memory segment from the GPU in a single OpenCL driver operation
but also reduces the total amount of memory that needs to be accessed, eliminating the need for remapping
or additional sorting. This approach drastically cuts down on the memory synchronization overhead for each
PCG iteration. The bu�er for exchanging the pk vector is kept in the host computer's memory because direct
memory transfers between GPUs are not supported in OpenCL. Although CUDA o�ers capabilities for such
transfers, OpenCL was chosen for its �exibility, allowing for the integration of diverse types of computing
hardware.

While this approach does lead to some degree of memory overlap, it was observed that even models with
multi-million degrees of freedom required less than a megabyte for data exchange. It is worth noting that
this amount of memory used can be further reduced by minimizing the cross-sectional area at the boundaries
between GPUs in the �nite element mesh. The mesh shown in Fig. 5a features a vertical split which minimizes
the cross-sectional, while if the split were to be redrawn horizontally, there would be signi�cantly more data
to exchange.

During testing, it was found that exchanging the pk vector incurred minimal performance cost. The
primary source of performance degradation was due to one GPU completing its tasks slightly ahead of the
other, leading to brief periods of idling. This discrepancy is particularly noticeable with smaller �nite element
models, though it's less of a concern since these models typically require minimal time to solve. To optimize
GPU load distribution, an axial compression benchmark is performed at startup to assess each GPU's iteration
rate. This allows the workload to be allocated in the most e�cient way possible.

For the sake of simplicity, the multi-GPU solver exclusively employs OpenCL, given its capability to o�oad
tasks to the system's CPU. Although this feature is seldom used in the context of joint repositioning, it proves
bene�cial for some �nite element models that require slightly more memory than what is available on the GPU.
Instead of upgrading the GPU or incorporating an additional one, the system's local memory can be utilized to
compensate for the shortfall. While OpenCL theoretically has the capability to dynamically manage memory
allocation between the GPU and system memory, such operations tend to be ine�cient. Moreover, although
it's possible to manually integrate CPU support into a separate solver, relying on OpenCL to manage CPU
tasks signi�cantly reduces the amount of code and complexity involved.

However, regular synchronization still has to occur during the PCG algorithm. Each GPU needs to know
the global convergence, and two other scalar values. The Barrier class provided by C# threading namespace
is used for its SignalAndWait() synchronization capability between threads. The Synchronize call in Fig. 6,
implies that both the main thread and all GPU threads must reach that stage in order to proceed further.

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


920

GPU 1

GPU 1 needs pk data from 
these nodes

GPU 2 needs pk data from 
these nodes

GPU 2

(a)

GPU 1 VRAM

rk

xk

w

EXPORT IMPORT

rk

xk

w

EXPORT IMPORT

pk
Exchange Buffer

pk pk

GPU 2 VRAM

(b)

Figure 5: GPU memory synchronization: (a) target synchronization data and (b) optimized synchronization
data memory layout.

This allows the main thread to sum up all of the individual calculated dot products of each GPU and then
return the resultant value to each GPU. In all cases, the GPU's wait until the global sum is returned, except
when computing the convergence, as this value is only needed to know when to stop iterating. Obviously this
results in a few extra computations being done in total, but it signi�cantly improves GPU scaling. Please note
that Fig. 6 only features the looped portion of the PCG algorithm. Each GPU has its local portions of the
PCG vectors, with the exception of the pk vector containing extra import information from other GPU's. The
local subscript implies that those dot products are the local GPU sums, while the subscript-less dot products
are summed from the local GPU sums.

3.4 Algorithm Robustness Testing

To test the multi-GPU scaling performance, a variety of �nite element models were tested under di�erent
setups. Table 2 depicts the scaling factor associated with each setup. Here, 0% scaling implies no change in
performance, while 100% implies perfect GPU scaling without any losses. Please note that each individual
device was tested for a optimum load split. Furthermore, even though a CPU is not a GPU, OpenCL enables
various devices to be treated as computing platforms. The data presented in the table illustrates that scalability
signi�cantly enhances with the increasing size of the �nite element system. This scalability is particularly

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


921

Main Thread GPU Thread

Synchronize()
convlocal = dot(rk, rk)

w = M -1 rk

Skip convergence check 
until later to save on 

synchronization cost.

βlocal = dot(w, rk)

Synchronize(convlocal, βlocal)

Synchronize()

conv = Σ convlocal

β = Σ βlocal

Synchronize(conv, β)

pk = w + pk (β/β0)

push(pk)

Synchronize()
pull(pk)

Synchronize()

pk 
Exchange Buffer

αlocal = dot(pk, w)

w = Apk

Synchronize(αlocal)

α = Σ αlocal

Synchronize()

Synchronize()

Synchronize(α)

xk = xk + pk * (β/α);
rk = rk - w * (β/α);

βold = β

Each GPU uploads portions 
of its pk vector that is 

requested by other GPU’s.

Stop iterating if convergence 
is met.

Figure 6: Overview of the multi-GPU synchronization

advantageous for large systems, which inherently require a longer time to solve compared to their smaller
counterparts. An axial tensile test was ran as a benchmark in this scenario.

GTX 1080 Ti 2x GTX 1080 Ti Resultant Scaling

1.0M DOF 348 500 29.3%

5.0M DOF 83 143 72.9%

10M DOF 42 72 72.1%

100M DOF 4.5 8.7 93.3%

150M DOF 3.1 6.0 96.7%

Table 2: Multi-GPU iteration rates and resultant scaling (performance gain)

Further, the performance of the joint repositioning system is demonstrated in Table 3. These benchmarks
were ran with a i9-10900KF CPU with a RTX 3060 Ti, or a GTX 1080 Ti with dual E5-2630 v4 CPU's.
The AVX-256 solver was run on the i9-10900KF system. It is very interesting to see that the CPU solver

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


922

edges out the GPU solvers at low resolutions. This is most likely due to the GPU initialization cost, and
its corresponding data transfer. Since the tested repositioning system only had 19,710 degrees of freedom
(DOF) at 5mm resolution, and the GPU solvers work best with larger models, it is well expected that the
CPU outperforms at these low resolutions. The GTX 1080 Ti also had a signi�cantly slower CPU, which
contributed to its high mesh preparation cost.

GTX 1080 Ti RTX 3060 Ti AVX-256 CPU

5 mm 489 186 124

4 mm 506 207 145

3 mm 685 279 322

2 mm 1315 578 1112

Table 3: Joint repositioning time (ms/loadstep)

4 APPLICATION-ORIENTED VALIDATION

Although the repositioning tool produces results that appear visually credible, various simpli�cations raise
doubts about its precision. To assess the accuracy of the repositioning software, models that were repositioned
virtually were evaluated against their real-world counterparts.

To achieve this, several individuals were scanned in a photogrammetry scanner adopting two distinct
hand positions. The �rst position required a radially abducted position, while the second involved a palmar
abduction of the thumb. After acquiring both scans, the acquired data was converted into 3D models and
then aligned with each other. This alignment employed a standard point-to-point method, utilizing singular
value decomposition to achieve a least squares best �t among points identi�ed on both meshes. Following
this alignment, the meshes were imported into the repositioning software, where virtual bones were assigned
to the �rst mesh. These bones were then meticulously rotated to align with the second mesh, after which the
joint repositioning software was used.

As the �nal step, a surface deviation map was generated and mean and maximum deviation values were
extracted from it. Figures 7 and 8 depict the validation work�ow. The protocol followed included the following
steps:

1. Scan subject's hand with the thumb radially abducted (Fig. 7a)

2. Rescan the same hand with a palmar abduction (Fig. 7b)

3. Align the two resulting scans

4. Virtually reposition the other four �ngers of the outwards extended thumb pose to match them with
their counterparts from the inwards extension pose (Fig. 7c)

5. Determine surface deviation comparisons between the two scans

Comparisons performed between the hand scans of four di�erent subjects revealed mean and maximum
surface deviations of 0.87 mm and 5.10 mm, respectively (Tab. 4). With respect to accuracy, achieving
large maximum deviations is possible because minor skin folds can easily increase deviations. Nonetheless,
areas of minor displacement demonstrate exceptional precision, leading to minimal average surface deviations.
Furthermore, qualitative visual inspections revealed that while small movements of the �ngers led to relatively
small deviations between the two scans, more signi�cant repositionings of the thumb led to challenges caused
by skin folds on the palmar side of the hand. Nevertheless, it is reasonable to conclude that the precision of

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


923

(a) (b) (c)

Figure 7: Determination of the surface deviation: (a) radial abduction, (b) palmar abduction and (c) aligned
scans

the virtual repositioning remains within the acceptable limits. Additionally, any larger imperfections can be
corrected by repositioning the skin on the palmar side of the hand. Figure 8 depicts graphical comparisons
between virtually and physically repositioned thumb poses, both obtained from an initial one characterized by
a radially abducted thumb.

Mean abs. dev. Max. abs. dev.

Subject 1 0.65 4.15

Subject 2 0.95 6.09

Subject 3 0.76 4.41

Subject 4 1.01 6.00

Subject 5 0.97 4.68

Average 0.87 5.10

Table 4: Surface deviation values between real and FEA predicted meshes.

5 CONCLUSIONS AND FUTURE WORK

The study presents a unique and innovative software tool capable to virtually reposition �ngers. This operation
is critical for patients characterized by reduced joint �nger mobility that prevent the development of thera-
peutically e�ective hand splints. Since to the best of authors' knowledge no similar tools are commercially
available, the signi�cance of the tool developed in the context of the current study cannot be understated.

However, the strength of the developed software tool does not reside just in the uniqueness of the software
solution proposed but also the large number of technical challenges that were solved through innovative
approaches. More speci�cally, the software tool features several important advancements in GPU-accelerated
FEA and mesh generation. One of the key innovations brought by the developed software tool include a
GPU-based mesher that relies on a single contouring method optimized for smooth surfaces. This technique
e�ectively balances accuracy and processing speed. The proposed approach enhances voxelization and mesh
generation, particularly suitable for modeling non-angular forms like human hands. Furthermore, the software
tool relies on a GPU FEA solver employing the Galerkin element formulation and a matrixless method to
reduce memory usage and improve computational speed. To rapidly solve linear systems with millions of

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


924

(a) (b) (c)

Figure 8: Comparison Approach: (a) Re-positioned Hand, (b) Overlaid and Re-positioned Hand (c) Surface
Deviation Map

degrees of freedom, the tool employs the PCG method optimized through parallel reduction. Finally, multi-
GPU optimization techniques are introduced for scalable FEA solving and they include e�cient data exchange
and load distribution among GPUs, leveraging OpenCL for broad hardware compatibility and integrating
CPU fallback for memory-demanding models. All these innovative technical features enable an improved
performance, accuracy, and scalability for the developed software tool. It is also noteworthy to emphasize that
the software tool demonstrated robustness, versatility and accuracy when tested on extremely large models
that were run on various hardware as well as on various hand geometries.

Future development avenues could include extension of this software to other types of orthoses, thereby
expanding the utility of the tool to other areas of physiotherapy. Furthermore the algorithms developed in the
context of this work hold great potential for repurposing in various scienti�c and entertainment sectors, such
as accelerating �nite element mesh generation from CT images or enhancing physical realism in video games.
The multi-GPU solver's adaptability suggests that it could be further developed to address complex structural
�nite element systems, including micro-�nite element models, thus o�ering a wider applicability in engineering
and scienti�c research. These enhancements and expansions could signi�cantly extend the software's impact
across multiple disciplines, leveraging its accuracy, speed, and user-friendliness.

Since the approach selected relied on several simpli�cations in the �nite element setup, a further need
for a comparative testing of the accuracy yielded by Delaunay triangulation and voxel-based methods exists.
Further, the incorporation of higher order elements could enhance the modeling of hand curvature. Future
e�orts should aim to re�ne the �nite element setup to achieve more precise modeling of the human hand,
building on previous studies' attempts at high-accuracy hand representation. Hyperelastic parameters could
be used in order to better predict the deformation of the human skin [11, 12]. Future enhancements could
involve replacing the simpli�ed capsule-based bones with a detailed skeletal hand model, featuring parametric
properties for adjustable bone lengths. In a less ideal scenario, simply scaling the skeleton bones could o�er a
rough approximation of bone structure.

Future updates could incorporate tendons and ligaments into the �nite element model for enhanced real-
ism. Currently, tendon representations can deform unrealistically during thumb repositioning. Modeling bone
and ligament sti�ness anisotropically with precise Young's moduli and Poisson's ratios could improve accu-
racy, though this presents challenges due to individual variations, such as age, a�ecting bone elasticity [22].
Improving skin contact modeling with collision checks between load steps could enhance accuracy, especially
in areas with loose skin, where the current setup falls short. Using a simpli�ed model for real-time preview
and opting for a more accurate, time-intensive computation upon �nalizing a repositioning could maintain
software performance without compromising accuracy. Further exploration into single-precision arithmetic,

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


925

possibly adopting a mixed precision system to balance speed and precision, could optimize iteration rates de-
spite potential round-o� errors [1]. Finding the right balance between single and double precision calculations
is essential to maximize e�ciency while minimizing errors.

ACKNOWLEDGEMENTS

This research was partially funded by the Natural Science and Engineering Research Council of Canada
(NSERC) and Mitacs Canada.

Adam Gorski, https://orcid.org/0009-0004-4429-8256
O. Remus Tutunea-Fatan, https://orcid.org/0000-0002-1016-5103
Louis M. Ferreira, https://orcid.org/0000-0001-9881-9177

REFERENCES

[1] Buttari, A.; Dongarra, J.; Kurzak, J.; Luszczek, P.; Tomov, S.: Using mixed precision for sparse matrix
computations to enhance the performance while achieving 64-bit accuracy. ACM Transactions on Mathe-
matical Software (TOMS), 34(4), 1�22, 2008. ISSN 0098-3500. http://doi.org/10.1145/1377596.
1377597.

[2] Choonara, Y.E.; du Toit, L.C.; Kumar, P.; Kondiah, P.P.D.; Pillay, V.: 3d-printing and the e�ect on
medical costs: a new era? Expert Review of Pharmacoeconomics & Outcomes Research, 16(1), 23�32,
2016. http://doi.org/10.1586/14737167.2016.1138860.

[3] Cignoni, P.; Montani, C.; Perego, R.; Scopigno, R.: Parallel 3d delaunay triangulation. Computer Graphics
Forum, 12(3), 129�142, 1993. http://doi.org/10.1111/1467-8659.1230129.

[4] Elteir, M.; Lin, H.; Feng, W.C.: Performance characterization and optimization of atomic operations
on amd gpus. In 2011 IEEE International Conference on Cluster Computing, 234�243, 2011. http:

//doi.org/10.1109/CLUSTER.2011.34.

[5] Faieghi, M.; Knowles, N.K.; Tutunea-Fatan, O.R.; Ferreira, L.M.: Fast generation of cartesian meshes
from micro-computed tomography data. Computer Aided Design and Applications, 16(1), 161�171, 2019.
http://doi.org/10.14733/cadaps.2019.161-171.

[6] Gorski, A.; Tutunea-Fatan, O.R.; Ferreira, L.M.: Software tool for interactive design of customized hand
splints. Computer-Aided Design and Applications, 21(6), 976�997, 2024. http://doi.org/10.14733/
cadaps.2024.976-997.

[7] Gurumurthy, B.; Broneske, D.; Schäler, M.; Pionteck, T.; Saake, G.: An investigation of atomic synchro-
nization for sort-based group-by aggregation on gpus. In 2021 IEEE 37th International Conference on Data
Engineering Workshops (ICDEW), 48�53, 2021. http://doi.org/10.1109/ICDEW53142.2021.00016.

[8] Harih, G.; Tada, M.: Chapter 21 - development of a feasible �nite element digital human hand model.
In S. Scataglini; G. Paul, eds., DHM and Posturography, 273�286. Academic Press, 2019. ISBN 978-0-
12-816713-7. http://doi.org/10.1016/B978-0-12-816713-7.00021-0.

[9] Inui, M.; Kaba, K.; Umezu, N.: Fast dexelization of polyhedral models using ray-tracing cores of
gpu. Comput. Aided Des. & Appl, 18(4), 786�798, 2021. http://doi.org/10.14733/cadaps.2021.
786-798.

[10] Knowles, N.K.; Kusins, J.; Columbus, M.P.; Athwal, G.S.; Ferreira, L.M.: Morphological and apparent-
level sti�ness variations between normal and osteoarthritic bone in the humeral head. Journal of Or-
thopaedic Research®, 38(3), 503�509, 2020. http://doi.org/doi.org/10.1002/jor.24482.

[11] Lapeer, R.; Gasson, P.; Karri, V.: Simulating plastic surgery: From human skin tensile tests, through
hyperelastic �nite element models to real-time haptics. Progress in Biophysics and Molecular Biology,

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

https://orcid.org/0009-0004-4429-8256
https://orcid.org/0000-0002-1016-5103
https://orcid.org/0000-0001-9881-9177
http://doi.org/10.1145/1377596.1377597
http://doi.org/10.1145/1377596.1377597
http://doi.org/10.1586/14737167.2016.1138860
http://doi.org/10.1111/1467-8659.1230129
http://doi.org/10.1109/CLUSTER.2011.34
http://doi.org/10.1109/CLUSTER.2011.34
http://doi.org/10.14733/cadaps.2019.161-171
http://doi.org/10.14733/cadaps.2024.976-997
http://doi.org/10.14733/cadaps.2024.976-997
http://doi.org/10.1109/ICDEW53142.2021.00016
http://doi.org/10.1016/B978-0-12-816713-7.00021-0
http://doi.org/10.14733/cadaps.2021.786-798
http://doi.org/10.14733/cadaps.2021.786-798
http://doi.org/doi.org/10.1002/jor.24482
http://www.cad-journal.net


926

103(2), 208�216, 2010. ISSN 0079-6107. http://doi.org/10.1016/j.pbiomolbio.2010.09.013.
Special Issue on Biomechanical Modelling of Soft Tissue Motion.

[12] Lapeer, R.J.; Gasson, P.D.; Karri, V.: A hyperelastic �nite-element model of human skin for interactive
real-time surgical simulation. IEEE Transactions on Biomedical Engineering, 58(4), 1013�1022, 2010.
http://doi.org/10.1109/TBME.2009.2038364.

[13] Lee, D.T.; Schachter, B.J.: Two algorithms for constructing a delaunay triangulation. International Jour-
nal of Computer & Information Sciences, 9(3), 219�242, 1980. http://doi.org/10.1007/BF00977785.

[14] Lopes, P.C.F.; Pereira, A.M.B.; Clua, E.W.G.; Leiderman, R.: A gpu implementation of the pcg method
for large-scale image-based �nite element analysis in heterogeneous periodic media. Computer Methods
in Applied Mechanics and Engineering, 399, 115276, 2022. ISSN 0045-7825. http://doi.org/10.

1016/j.cma.2022.115276.

[15] Lorensen, W.E.; Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In
Seminal graphics: pioneering e�orts that shaped the �eld, 347�353. Association for Computing Machinery,
1998. http://doi.org/10.1145/280811.281026.

[16] Mathur, A.B.; Collinsworth, A.M.; Reichert, W.M.; Kraus, W.E.; Truskey, G.A.: Endothelial, cardiac
muscle and skeletal muscle exhibit di�erent viscous and elastic properties as determined by atomic force
microscopy. Journal of Biomechanics, 34(12), 1545�1553, 2001. ISSN 0021�9290. http://doi.org/

10.1016/S0021-9290(01)00149-X.

[17] Nielson, G.: Dual marching cubes. In IEEE Visualization 2004, 489�496, 2004. http://doi.org/10.

1109/VISUAL.2004.28.

[18] Ramirez-Salazar, J.F.; Mesa-Munera, E.; Bedoya, J.W.B.; Boulanger, P.: Comparison between lagrange
multiplier and penalty methods to enforce essential boundary conditions in meshfree methods. Avances
en Sistemas e Informática, 8(3), 51�56, 2011.

[19] Saint-Georges, P.; Warzée, G.; Beauwens, R.; Notay, Y.: High-performance pcg solvers for fem structural
analysis. International journal for numerical methods in engineering, 39(8), 1313�1340, 1996. http:

//doi.org/10.1002/(SICI)1097-0207(19960430)39:8<1313::AID-NME906>3.0.CO;2-J.

[20] Straub, J.; Kerlin, S.: Development of a large, low-cost, instant 3d scanner. Technologies, 2(2), 76�95,
2014. http://doi.org/10.3390/technologies2020076.

[21] Weyler, R.; Oliver, J.; Sain, T.; Cante, J.: On the contact domain method: A comparison of penalty and
lagrange multiplier implementations. Computer Methods in Applied Mechanics and Engineering, 205�
208, 68�82, 2012. ISSN 0045-7825. http://doi.org/10.1016/j.cma.2011.01.011. Special Issue on
Advances in Computational Methods in Contact Mechanics.

[22] Zioupos, P.; Currey, J.: Changes in the sti�ness, strength, and toughness of human cortical bone with age.
Bone, 22(1), 57�66, 1998. ISSN 8756�3282. http://doi.org/10.1016/S8756-3282(97)00228-7.

[23] Zucca, R.; Santos, R.C.; Lovatto, J.; Cesca, R.S.; Lovatto, F.: Development of a low cost 3d printer
indicated to prototyping objects. Semina: Ciencias Exatas e Tecnologicas, 40(1), 47�54, 2019. http:

//doi.org/10.5433/1679-0375.2019v40n1p47.

Computer-Aided Design & Applications, 22(5), 2025, 912-926
© 2025 U-turn Press LLC, http://www.cad-journal.net

http://doi.org/10.1016/j.pbiomolbio.2010.09.013
http://doi.org/10.1109/TBME.2009.2038364
http://doi.org/10.1007/BF00977785
http://doi.org/10.1016/j.cma.2022.115276
http://doi.org/10.1016/j.cma.2022.115276
http://doi.org/10.1145/280811.281026
http://doi.org/10.1016/S0021-9290(01)00149-X
http://doi.org/10.1016/S0021-9290(01)00149-X
http://doi.org/10.1109/VISUAL.2004.28
http://doi.org/10.1109/VISUAL.2004.28
http://doi.org/10.1002/(SICI)1097-0207(19960430)39:8<1313::AID-NME906>3.0.CO;2-J
http://doi.org/10.1002/(SICI)1097-0207(19960430)39:8<1313::AID-NME906>3.0.CO;2-J
http://doi.org/10.3390/technologies2020076
http://doi.org/10.1016/j.cma.2011.01.011
http://doi.org/10.1016/S8756-3282(97)00228-7
http://doi.org/10.5433/1679-0375.2019v40n1p47
http://doi.org/10.5433/1679-0375.2019v40n1p47
http://www.cad-journal.net

	INTRODUCTION
	PROCESSING WORKFLOW
	Geometry Loading
	Joint Placement
	Joint Rotations
	Angle Verification

	IMPLEMENTATION
	GPU Mesher
	GPU FEA Solver
	Multi-GPU Optimization
	Algorithm Robustness Testing

	APPLICATION-ORIENTED VALIDATION
	CONCLUSIONS AND FUTURE WORK

