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Abstract. Scalar valued functions, such as height- and signed distance fields, are essential in
real-time computer graphics. Depending on dimensionality, these are represented by function
sample values stored on a regular grid that are bi- or trilinearly filtered, resulting in C0

approximations. First, we propose to store the partial derivatives of the scalar valued function
with the function values and use Hermite interpolation between the samples. This guarantees
a globally C1-continuous result. For rendering applications, the surface normal vectors are
often part of the discrete field of samples, as such, our technique does not necessarily require
extra storage, merely a different basis to store the same data. The exact normals of the
reconstructed cubic Hermite surface can be used as shading normals, resulting in a storage
efficient replacement for normal mapping with richer visual appearance. We show that our
method generalizes to arbitrary orders and dimensions. Moreover, we derive an approximation
for mixed partial derivatives for three dimensional first order fields, akin to Adini’s method
for parametric surface patches. We demonstrate the applicability of Hermite interpolation in
height field and signed distance field rendering.

Keywords: computer graphics, parallax mapping, geometric modeling, Hermite interpola-
tion
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1 INTRODUCTION

A common task in computer graphics is to store an arbitrary real valued continuous function. The usual discrete
representation of such f ∈ Rn → R scalar functions consist of samples on a regular cubic grid inside an axis
aligned bounding box. The samples contain the function value f(x) at the sample position x ∈ Df . Upon
sampling, we want to reconstruct the function value at an arbitrary position inside the described volume,
which we can achieve by interpolating between the stored function values. The simplest interpolation is
tensor product linear interpolation, i.e. linear, bilinear, trilinear interpolation in 1, 2, and 3 dimensions. This
guarantees a C0-continuous reconstruction.
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However, the smoothness of the stored functions is often important for the application. To obtain a suffi-
ciently smooth interpolated output, one might need a grid with very high resolution. Higher order continuity
may be achieved by incorporating a larger sampling footprint [14], however, this comes with an increased
execution time. Our goal is reconstruct with higher order continuity by modifying the samples and without
modifying the filtering footprint size. To achieve this, we store the ∇f(x) gradient in addition to the function
value f(x).

In terms of analytical properties, a higher order interpolation scheme also provides a more accurate approx-
imation to an underlying continuous function. As such, a first order method that uses Hermite interpolation is
capable of representing a shape with a given error using less data than a traditional, tensor product multilinear
filtered field. Our paper focuses on defining the interpolation method with proven interpolation properties, and
the qualitative properties of such reconstructions in the case of height field and signed distance field rendering,
with a secondary focus on render efficiency.

In Section 2 we give an overview of the related literature. Section 3 derives the one dimensional Hermite
polynomials for solving the interpolation problem, and proves their interpolation properties, which are then
expanded to multiple dimensions in Section 4. Section 5 solves the problem of interpolation to a grid of higher
order samples. Finally in Section 6 we show applied results in height map rendering and three-dimensional
surface representations using signed distance fields, including an approximation for mixed partial derivatives in
the three dimensional first order case.

2 PREVIOUS WORK

Texture filtering is an important step in computer graphics applications. Its main purpose is to define what
values are read from a texture at a given sampling position. The two main sampling methods supported by
GPU hardware acceleration are nearest neighbour filtering and linear (bilinear, trilinear) interpolation. The
former results in discontinuous reconstruction, while the latter guarantees C0-continuity. Other reconstruction
methods are achieved by fetching the samples and doing further arithmetic “by hand.” Combining multiple
linearly filtered samples can yield higher continuity [14, 5]. The drawback of these higher order interpolation
methods is the increased filtering footprint, i.e. they require more samples for a single evaluation. We aim to
keep the footprint the same as it is with linear filtering – the samples at the vertices of the surrounding cell.
The Hermite interpolation problem and its solution in one dimension is discussed in many places in literature,
for example by Farin [8]. We derive the one-dimensional results using our notation, which we then generalize
to higher dimensions.

Height maps are important tools for realistic rendering. They contain geometric information in the form
of perturbation to a coarser surface representation, resulting in a high detail surface. There are many algo-
rithms and techniques for rendering these surfaces, Szirmay-Kalos et al. give an overview [15]. Cone step
mapping [6] and relaxed conemaps [13] present an efficient way of resolving the view ray–surface intersections
using additional information stored besides the height values. Our higher order interpolation method can be
used alongside these methods either by incorporating it in the intersection search, or only to the shading stage
– calculating the normal vector –, resulting in very low additional computation cost with a great improvement
in rendering quality.

Signed distance functions and fields are used in computer graphics as either an auxiliary data structure for
graphical effects like ambient occlusion or soft shadows, or they can be the primary representation of the surface.
Current hardware is able to render these surfaces using sphere tracing [11] and its variants [12, 2], leveraging
the geometrical meaning of the function values. Signed distance fields are also used in two dimensions for
scalable high quality font rendering [10]. For two and three-dimensional surfaces [9] gives an adaptive approach
to minimizing storage using quadtree and octree structures. Three dimensional signed distance fields are used
in many applications for real-time graphics [1, 7, 16].
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3 HERMITE INTERPOLATION IN ONE DIMENSION

3.1 The Hermite Interpolation Problem

In one dimension, the order n Hermite interpolation problem (n ∈ N) can be stated as follows. Given
f0
0 , f

0
1 , f

1
0 , f

1
1 , . . . , f

n
0 , f

n
1 ∈ R, find a polynomial p of degree 2n+ 1 such that

∀x ∈ {0, 1} : p(x) = f0
x , p′(x) = f1

x , p′′(x) = f2
x , . . . , p(n)(x) = fn

x . (1)

The problem can be solved by looking for the solution as a polynomial with unknown coefficients, and
calculating its derivatives.

p(x) = a0 + a1x+ a2x
2 + · · ·+ a2n+1x

2n+1

p′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ (2n+ 1)a2n+1x

2n

p′′(x) = 2a2 + 6a3x+ 12a4x
2 + · · ·+ (2n+ 1)(2n)a2n+1x

2n−1

...

Then we substitute these polynomials into the equations, resulting in a linear system of equations with
2n + 2 unknowns and 2n + 2 equations. For a fixed n, the matrix of the system is always the same, and it
has full rank, meaning that there is a unique solution. Let B ∈ R(2n+2)×(2n+2) be the matrix of the linear
system, a = [a0, a1, . . . , a2n+1]

T the unknown coefficient vector, and f = [f0
0 , f

0
1 , . . . , f

n
0 , f

n
1 ]

T the vector of
values to interpolate. Then the matrix equation and solution are

Ba = f ⇒ a = B−1f . (2)

The problem can also be solved using the order n Hermite polynomials which we describe next.

3.2 One Dimensional Hermite Polynomials

Let n ∈ N be the maximal order. We define the order n Hermite polynomials through a set of equations.

Definition 1. The order n Hermite polynomial of base position x interpolating the kth derivative k ∈
{0, 1, . . . , n} and x ∈ {0, 1}, is αk,n

x : R → R. The defining equations for αk,n
x are

∀j ∈ {0, 1, . . . , n} : ∀y ∈ {0, 1} : (αk,n
x )(j)(y) = δk,jδx,y, (3)

where f (j) is the jth derivative of f and

δa,b =

{
1, a = b,

0, a ̸= b.
(4)

This means that the values and the derivatives of αk,n
x are zero at 0 and 1 except for the kth derivative at

x, where it is 1. The number of order n Hermite polynomials is therefore 2n+ 2 – one for each interpolated
position and derivative up to n. As there are 2n+2 equations for each polynomial, there is a unique polynomial
of degree 2n + 1 satisfying all requirements for each (k, n, x) triplet. We can calculate the polynomials the
same way as we did for the general Hermite interpolation problem in Section 3.1.

For example, the order 0 Hermite polynomials are defined by the following equations.

α0,0
0 (0) = 1, α0,0

1 (0) = 0,

α0,0
0 (1) = 0, α0,0

1 (1) = 1.
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We look for the solution in the form of linear polynomials, i.e.

α0,0
0 (x) = a00 + a01x and α0,0

1 (x) = a10 + a11x

After substitution, the equations become

a00 + a01 · 0 = 1, a10 + a11 · 0 = 0,

a00 + a01 · 1 = 0, a10 + a11 · 1 = 1.

Solving them we get the order 0 Hermite polynomials as

α0,0
0 (x) = 1− x and α0,0

1 (x) = x.

The order 1 Hermite cubic polynomials are

α0,1
0 (x) = 1− 3x2 + 2x3, α0,1

1 (x) = 3x2 − 2x3,

α1,1
0 (x) = x− 2x2 + x3, α1,1

1 (x) = −x2 + x3.

The order 2 Hermite quintic polynomials are

α0,2
0 (x) = 1− 10x3 + 15x4 − 6x5, α0,2

1 (x) = 10x3 − 15x4 + 6x5,

α1,2
0 (x) = x− 6x3 + 8x4 − 3x5, α1,2

1 (x) = −4x3 + 7x4 − 3x5,

α2,2
0 (x) = 1

2x
2 − 3

2x
3 + 3

2x
4 − 1

2x
5, α2,2

1 (x) = 1
2x

3 − x4 + 1
2x

5.

3.3 Interpolation Using Hermite Polynomials

The order n Hermite polynomials may be used as a polynomial basis for solving the interpolation problem
stated in Section 3.1. The basis function coefficients are exactly the given parameters – function values and
derivatives – which makes the basis extremely useful.

Theorem 1. The following polynomial solves the interpolation problem in Equation (1)

p(x) =

1∑
i=0

n∑
k=0

fk
i · αk,n

i (x). (5)

Proof. We only need to check whether p interpolates the given values and derivatives in Equation (1). This
follows as

∀j ∈ {0, 1} : ∀ℓ ∈ {0, 1, . . . , n} :

p(ℓ)(j)
(5)
=

(
1∑

i=0

n∑
k=0

fk
i · αk,n

i (j)

)(ℓ)

=

1∑
i=0

n∑
k=0

fk
i ·
(
αk,n
i

)(ℓ)
(j)

(3)
=

1∑
i=0

n∑
k=0

fk
i · δi,j · δk,ℓ

(4)
= f ℓ

j

In the last step the only non-zero term is when both δ’s are one, i.e. i = j and k = ℓ.
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3.4 Interpolation on a General Interval

The problems stated in Section 3.1 and 4.1 can be generalized to any interval, and their solution can be written
in terms of the defined Hermite polynomials. Sadly, unlike the Berstein-basis, Hermite polynomials are not
invariant under affine parameter transformations. The problem is as follows. Let n ∈ N, a, b ∈ R, a < b, and
given f0

a , f
0
b , f

1
a , f

1
b , . . . , f

n
a , f

n
b ∈ R, find a polynomial p of degree 2n+ 1 such that

∀x ∈ {a, b} : ∀k ∈ {0, 1, . . . , n} : p(k)(x) = fk
x . (6)

The solution is unique as before. The a = 0, b = 1 case is equivalent to the original wording. Let us now
define the Hermite polynomials for the new interval.

Definition 2. Let n ∈ N, a, b ∈ R, a < b, k ∈ {0, 1, . . . , n}, x ∈ {a, b}.

βk,n
x,[a,b](y) := (b− a)k · αk,n

x̂

(
sba(y)

)
, (7)

where x̂ = 0 if x = a and x̂ = 1 if x = b; and sba is the linear mapping from [a, b] to [0, 1]:

sba(x) =
x− a

b− a
. (8)

Note that sba(a) = 0 and sba(b) = 1, therefore x̂ = sba(x). These polynomials solve the interpolation
problem similarly as before. To show that, first we verify the interpolation property of the polynomials.

Theorem 2. Let n ∈ N, a, b ∈ R, a < b, k ∈ {0, 1, . . . , n}, x ∈ {a, b}.

∀y ∈ {a, b},∀ℓ ∈ {0, 1, . . . , n} :
(
βk,n
x,[a,b]

)(ℓ)
(y) = δx,y · δk,ℓ. (9)

Proof. Let y ∈ {a, b}, ℓ ∈ {0, 1, . . . , n}, x̂ := sba(x).(
βk,n
x,[a,b]

)(ℓ)
(y)

(7)
=
(
(b− a)k · αk,n

x̂

(
sba(y)

))(ℓ)
= (b− a)k ·

(
αk,n
x̂

(
y − a

b− a

))(ℓ)

= (b− a)k ·
(
y − a

b− a

)′

·
((

αk,n
x̂

)′(y − a

b− a

))(ℓ−1)

= (b− a)k−1 ·
((

αk,n
x̂

)′(y − a

b− a

))(ℓ−1)

= (b− a)k−2 ·
((

αk,n
x̂

)′′(y − a

b− a

))(ℓ−2)

= . . .

= (b− a)k−ℓ ·
(
αk,n
x̂

)(ℓ)(y − a

b− a

)
(3)
= (b− a)k−ℓ · δx̂,sba(y) · δk,ℓ
(8)
= δx,y · δk,ℓ.

Computer-Aided Design & Applications, 22(5), 2025, 927-946
© 2025 U-turn Press, LLC, http://www.cad-journal.net

http://www.cad-journal.net


932

Theorem 3. The following polynomial solves the interpolation problem, i.e. it satisfies Equation (6),

p(x) =
∑

i∈{a,b}

n∑
k=0

fk
i · βk,n

i,[a,b](x). (10)

The proof is identical to the proof of Theorem 1, replacing αk,n
i by βk,n

i,[a,b].

4 HIGHER DIMENSIONAL HERMITE INTERPOLATION

We define the solution to the multidimensional Hermite interpolation problem in terms of the one-dimensional
solutions. The higher dimensional multivariate Hermite polynomials are written as the tensor product of the
one-dimensional polynomials.

In the higher dimensional cases, the equations become very hard to read without additional notational
aid, so let us define multi-indices. An i = (i1, i2, . . . , ir) ∈ Nr r-dimensional multi-index is a tuple with r
elements. We define the following operations on multi-indices

|i| := i1 + i2 + · · ·+ ir,

i! := i1! · i2! · . . . · ir!,
xi := xi1

1 · xi2
2 · . . . · xir

r ,

∂if := ∂i1
1 ∂i2

2 . . . ∂ir
r =

∂|i|f

∂xi1
1 ∂xi2

2 . . . ∂xir
r

,

1∑
i=0

:=
∑

i∈{0,1}r

,

n∑
|i|=0

:=
∑

i∈{ℓ∈Nr : |ℓ|≤n}

.

4.1 The Interpolation Problem in r Dimensions

We generalize the interpolation problem from the one-dimensional [0, 1] interval to the r-dimensional [0, 1]r

hypercube. We state the problem as the following. Let n ∈ N be the maximal order, and given

i ∈ {0, 1}r,k ∈ Nr, |k| ≤ n : fk
i ∈ R

values, find a multivariate polynomial f̃n : Rr → R such that

∀k ∈ Nr, |k| ≤ n : ∀x ∈ {0, 1}r : ∂kf̃n(x) = fk
x . (11)

We give a constructive solution to the problem. The solution includes the one-dimensional Hermite polyno-
mials, and it has a similar structure: we construct basis polynomials that generalize the property in Equation (3)
to the multivariate case.

4.2 Multivariate Hermite Polynomials

Definition 3. Let n ∈ N,k = (k1, k2, . . . , kn) ∈ Nr, |k| ≤ n, j = [j1, j2, . . . , jn]
T ∈ {0, 1}r. The multivariate

Hermite basis polynomials are

αk,n
j (x) :=

r∏
i=1

αki,n
ji

(xi)
(
x = [x1, x2, . . . , xr]

T
)
∈ Rr). (12)
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Theorem 4. The multivariate Hermite polynomial αk,n
x with x ∈ {0, 1}r,k ∈ Nr, |k| ≤ n has the following

interpolation property:

∀ℓ ∈ Nr, |ℓ| ≤ n, ∀y ∈ {0, 1}r : ∂ℓαk,n
x (y) = δk,ℓ · δx,y. (13)

Proof. Let k, ℓ ∈ Nr, |k|, |ℓ| ≤ n, x,y ∈ {0, 1}r.

∂ℓαk,n
x (y)

(12)
= ∂ℓ

r∏
i=1

αki,n
xi

(yi) =

r∏
i=1

(
αki,n
xi

)(ℓi)
(yi)

(3)
=

r∏
i=1

δki,ℓi · δxi,yi = δk,ℓ · δx,y

4.3 Hermite Interpolation in r Dimensions

Let n ∈ N denote the fixed maximal order, and let us define the interpolating polynomials using the multivariate
Hermite basis .

Theorem 5. Given the function values and derivatives in the vertices fk
y ∈ R, where y ∈ {0, 1}r and

k ∈ Nr, |k| ≤ n, the following f̃n polynomial

f̃n(x) :=

1∑
i=0

n∑
|k|=0

fk
i · αk,n

i (x) (x ∈ [0, 1]r) (14)

solves the multivariate interpolation problem stated in Equation (11).

Proof. Let k, ℓ ∈ Nr, |k|, |ℓ| ≤ n, i, j ∈ {0, 1}r.

∂ℓf̃n(j)
(14)
= ∂ℓ

1∑
i=0

n∑
|k|=0

fk
i · αk,n

i (j) =

1∑
i=0

n∑
|k|=0

fk
i · ∂ℓαk,n

i (j)

(13)
=

1∑
i=0

n∑
|k|=0

fk
i · δk,ℓ · δi,j = fℓ

j .

Remark 1. The case n = 0 is also known as linear, bilinear, and trilinear interpolation in one, two, and
three dimensions, respectively. Only the function value is given at the ends of the interval/vertices of the
square/cube. Important note that in higher dimensions (r > 1), the resulting polynomial is not linear –
despite what the names suggest.

The polynomial can be written as

f̃(x) =

1∑
i=0

(1− x)1−ixifi =

1∑
i=0

fi

r∏
j=1

(1− xj)
1−ijx

ij
j .

Here, f̃ is linear in the sense that if we fix all but one of the variables, the resulting polynomial is linear
with regards to the free variable. In each coefficient, either xj or 1 − xj appears exactly once because their
exponents, 1− ij and ij , are 0 and 1 in some order.
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Figure 1: The 12 order 1 basis Hermite basis functions on [0, 1]2 translated to the common interpolated value
– left: function value, middle and right: partial derivative in the x and y directions.

Remark 2. As an example, the first order Hermite basis in the two-dimensional case has the following 12
polynomials. All of them are the products of two one-dimensional Hermite polynomial – the exact polynomials
α0,1
0 , α0,1

1 , α1,1
0 , and α1,1

1 are listed in Section 3.2. The functions are visualized in Figure 1.
The first four polynomials interpolate the function value at the vertices of [0, 1]2:

α
(0,0),1
(0,0) (x, y) = α0,1

0 (x) · α0,1
0 (y), α

(0,0),1
(1,0) (x, y) = α0,1

1 (x) · α0,1
0 (y),

α
(0,0),1
(0,1) (x, y) = α0,1

0 (x) · α0,1
1 (y), α

(0,0),1
(1,1) (x, y) = α0,1

1 (x) · α0,1
1 (y).

The rest interpolate the partial derivatives in the x or y directions.

α
(1,0),1
(0,0) (x, y) = α1,1

0 (x) · α0,1
0 (y), α

(1,0),1
(1,0) (x, y) = α1,1

1 (x) · α0,1
0 (y),

α
(1,0),1
(0,1) (x, y) = α1,1

0 (x) · α0,1
1 (y), α

(1,0),1
(1,1) (x, y) = α1,1

1 (x) · α0,1
1 (y),

α
(0,1),1
(0,0) (x, y) = α0,1

0 (x) · α1,1
0 (y), α

(0,1),1
(1,0) (x, y) = α0,1

1 (x) · α1,1
0 (y),

α
(0,1),1
(0,1) (x, y) = α0,1

0 (x) · α1,1
1 (y), α

(0,1),1
(1,1) (x, y) = α0,1

1 (x) · α1,1
1 (y).

4.4 Interpolation on a General r -dimensional Interval

Let a, b ∈ Rr and a < b (meaning, that ∀i ∈ {1, 2, . . . , r} : ai < bi). Let us define the r-dimensional interval
[a, b] and its vertices V (a, b) as

[a, b] := [a1, b1]× [a2, b2]× · · · × [ar, br] ⊂ Rr and
V (a, b) := {a1, b1} × {a2, b2} × · · · × {ar, br} ⊂ Rr.

We define the general r-dimensional Hermite polynomials analogously to Definition 3. The interpolation
property holds similarly.

Definition 4. Let a, b ∈ Rr,a < b, n ∈ N,k ∈ Nr, |k| ≤ n, j ∈ V (a, b).

βk,n
j,[a,b](x) :=

r∏
i=1

βki,n
ji,[ai,bi]

(xi) (x ∈ Rr) . (15)

Theorem 6. Let a, b ∈ Rr,a < b, n ∈ N,k ∈ Nr, |k| ≤ n,x ∈ V (a, b).

∀ℓ ∈ Nr, |ℓ| ≤ n,∀y ∈ V (a, b) : ∂ℓβk,n
x,[a,b](y) = δx,y · δk,ℓ. (16)
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Figure 2: Example two-dimensional grid and notation

The proof is analogous to the proof of Theorem 4.

Theorem 7. Let a, b ∈ Rr,a < b, n ∈ N. Given fk
i ∈ R for k ∈ Nr, |k| ≤ n, i ∈ V (a, b), the multivariate

polynomial

f̃n(x) :=
∑

i∈V (a,b)

n∑
|k|=0

fk
i · βk,n

i,[a,b](x) (x ∈ [a, b]) (17)

has the following interpolation properties

∀x ∈ V (a, b),∀k ∈ Nr, |k| ≤ n : ∂kf̃n(x) = fk
x . (18)

5 HERMITE INTERPOLATION ON A GRID OF SAMPLES

If we want to approximate a real valued function on a finite domain of an axis aligned bounding box, we
may sample the values and the derivatives of the function on a grid of positions. Let the bounding box be
[a, b] ⊂ Rr and choose the subdivisions as follows. Let m ∈ Nr the number of intervals in each direction and
dij ∈ R (i ∈ {1, 2, . . . , r}, j ∈ {0, 1, . . . ,mi}) the subdivision points:

ai = di0 < di1 < di2 < · · · < dimi = bi (i ∈ {1, 2, . . . , r})

Then the i ∈ Nr indexed vertex, enclosed interval (cell), and cell vertices are

pi := [d1i1 , d2i2 , . . . , drir ]
T ∈ Rr (i ≤ m),

Ii := [pi,pi+1] ⊂ Rr (i < m),

Xi := V (pi,pi+1) ⊂ Ii (i < m),

where 1 = (1, 1, . . . , 1) ∈ Nr. See Figure 2 for a 2D example.
We define a global interpolating piece-wise polynomial function in [a, b], given the function values and

derivatives at the grid points.
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(a) Examples of cell faces in two dimensions (b) The two neighbouring cells

Figure 3: Illustrations for the notation used in the proof of Theorem 8.

Definition 5. Let n ∈ N, fk
pi

∈ R (k ∈ Nr, |k| < n, i ∈ Nr, i ≤ m),

f̃n(x) :=

1∑
j=0

n∑
|k|=0

fk
pi+j

· βk,n
pi+j ,Ii

(x) (i ∈ Nr, i < m,x ∈ Ii ⊂ [a, b]) (19)

This definition is analogous to Theorem 7 in each interval. As such it has the same interpolation properties.
The definition is, however, ambiguous as the intervals overlap. We show that f̃n is in fact well defined – the
overlapping intervals give the same definition to the function – and it is n times continuously differentiable on
[a, b].

Theorem 8. The interpolating piece-wise polynomial f̃n : [a, b] → R function is well defined and

∀k ∈ Nr, |k| ≤ n : ∂kf̃n ∈ C[a, b]. (20)

Proof. Since f̃n is a piece-wise polynomial, it is well defined and infinitely differentiable in the interior of all
cells. We have to show that the neighbouring cells give the same definition for f̃n on the boundary and that
the desired derivatives match.

Let us now introduce notation for the faces of the cells and the set of grid points that lie on the vertices
of this face.

F q
i := [pi,pi+ẽq ] ⊂ Rr, (i ∈ Nr, i ≤ m, q ∈ {1, 2, . . . , r})

W q
i := V

(
pi,pi+ẽq

)
⊂ F q

i , (i ∈ Nr, i ≤ m, q ∈ {1, 2, . . . , r})

where ẽq = (1, 1, . . . , 1, 0, 1, . . . , 1) ∈ Nr and the zero is at the qth coordinate. See Figure 3a for examples.
We can also write the inner F q

i faces as an intersection between neighbouring cells:

F q
i = Ii−eq

∩ Ii, (i ∈ Nr,0 < i < m, q ∈ {1, 2, . . . , r})

where eq = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Nr and the 1 is the qth coordinate.
Both F q

i and W q
i may be written out explicitly in terms of the dij subdivision points. Note that all points

in the sets share a common qth coordinate.

F q
i = [d1i1 , d1,i1+1]× · · · × {dqiq} × · · · × [drir , dr,ir+1],

W q
i = {d1i1 , d1,i1+1} × · · · × {dqiq} × · · · × {drir , dr,ir+1}.
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We show, that the value and derivatives of f̃n on the cell boundary F q
i depend only on the values fk

p ,
where p ∈ W q

i and k ∈ Nr, |k| ≤ n. For this let us begin with Equation (19) which can be written as

f̃n(x) =
∑
p∈Xi

n∑
|k|=0

fk
p · βk,n

p,Ii
(x) (i ∈ Nr, i < m,x ∈ Ii ⊂ [a, b]) (21)

Since Xi = W q
i ∪W q

i+eq
is a non-overlapping partition, we can break the sum into two parts. The partition

corresponds to the two parallel cell faces F q
i and F q

i+eq
shown in Figure 3b. Thus the above is expressed as

∑
p∈W q

i

n∑
|k|=0

fk
p · βk,n

p,Ii
(x) +

∑
p∈W q

i+eq

n∑
|k|=0

fk
p · βk,n

p,Ii
(x) =: S1(x) + S2(x) (22)

Let us now inspect the partial derivatives ℓ ∈ Nr, |ℓ| ≤ n at the cell boundary y ∈ F q
i . Note that

yq = dqiq for all y ∈ F q
i . Let us call this value λ := dqiq . We will substitute this known coordinate in S1

and S2. The two neighbouring subdivision values are ω := dq,iq−1 and µ := dq,iq+1. First we show, that
∂ℓS2(y) = 0 (y ∈ F q

i ).

∂ℓS2(y) =
∑

p∈W q
i+eq

n∑
|k|=0

fk
p · ∂ℓβk,n

p,Ii
(y) (23)

(15)
=

∑
p∈W q

i+eq

n∑
|k|=0

fk
p ·

r∏
j=1

(
β
kj ,n

pj ,[djij
,dj,ij+1]

)(ℓj)
(yj) (24)

Let us now inspect the j = q factor. Since p ∈ W q
i+eq

⇒ pq = µ, and µ ̸= λ:

(
β
kq,n

pq,[dqiq ,dq,iq+1]

)(ℓq)
(yq) =

(
β
kq,n

µ,[λ,µ]

)(ℓq)
(λ)

(9)
= δµ,λ · δkq,ℓq = 0 (25)

Therefore ∀ℓ ∈ Nr, |ℓ| ≤ n, ∀y ∈ F q
i : ∂ℓS2(y) = 0.

Let us continue with the inspection of the neighbouring cell Ii−eq
. Similarly to Equation (21), we can

write f̃n on the interval as

f̃n(x) =
∑

p∈Xi−eq

n∑
|k|=0

fk
p · βk,n

p,Ii−eq
(x)

(
i ∈ Nr, eq ≤ i < m,x ∈ Ii−eq

)
(26)

Here, Xi−eq = W q
i−eq

∪W q
i , which then splits the sum into two parts. The partition corresponds to the

two parallel cell faces F q
i−eq

and F q
i shown in Figure 3b. The above is expressed as

∑
p∈W q

i−eq

n∑
|k|=0

fk
p · βk,n

p,Ii−eq
(x) +

∑
p∈W q

i

n∑
|k|=0

fk
p · βk,n

p,Ii−eq
(x) =: Z1(x) + Z2(x) (27)

We examine the sum on the cell face F q
i as before. Similarly to S2, we will find that ∂ℓZ1(y) = 0 (∀ℓ ∈
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Nr, |ℓ| ≤ n, ∀y ∈ F q
i ):

∂ℓZ1(y) =
∑

p∈W q
i−eq

n∑
|k|=0

fk
p · ∂ℓβk,n

p,Ii−eq
(x) (28)

(15)
=

∑
p∈W q

i−eq

n∑
|k|=0

fk
p ·

 r∏
j=1
j ̸=q

(
β
kj ,n

pj ,[djij
,dj,ij+1]

)(ℓj)
(yj)

(βkq,n

pq,[dq,iq−1,dqiq ]

)(ℓq)
(yq) (29)

The factor for j = q was written separately because the base interval differs from Ii in the qth coordinate.
Substituting the known values related to the qth dimension, the factor can be written as(

β
kq,n

ω,[ω,λ]

)(ℓq)
(λ)

(9)
= δω,λ · δkq,ℓq = 0. (30)

Finally, we need to prove that

∀ℓ ∈ Nr, |ℓ| ≤ n, ∀y ∈ F q
i : ∂ℓS1(y) = ∂ℓZ2(y). (31)

S1 and Z2 only differ in a single factor
(
β
kq,n

pq,[∗]

)
. We can reuse Equations (24) and (29), the only change

needed in both is to replace the range of the outside sum by p ∈ W q
i . The qth factors of ∂ℓS1(y) and ∂ℓZ2(y)

are as follows.

S1 :
(
β
kq,n

pq,[dqiq ,dq,iq+1]

)(ℓq)
(yq) =

(
β
kq,n

λ,[λ,µ]

)(ℓq)
(λ)

(9)
= δλ,λ · δkq,ℓq = δkq,ℓq

Z2 :
(
β
kq,n

pq,[dq,iq−1,dqiq ]

)(ℓq)
(yq) =

(
β
kq,n

λ,[ω,λ]

)(ℓq)
(λ)

(9)
= δλ,λ · δkq,ℓq = δkq,ℓq

Substituting these into ∂ℓS1(y) and ∂ℓZ2(y) makes them identical.

Remark 3. Theorem 8 states that the interpolating multivariate polynomial f̃n is globally n times continuously
differentiable. This means that for practical purposes, the cell transitions are also sufficiently smooth.

Remark 4. The interpolation problem could be restated to use different interpolation orders in each dimension.
The solution is similar in this case as well: in Equation (12), n would be replaced by an n ∈ Nr, and the ith
factor would use ni as its highest interpolated order.

Remark 5. In our definition, the higher dimensional order n problem interpolates derivatives up to the total
order n. Instead, this may be changed to be the maximal order, in which case the multi-index k ∈ Nr order
goes up to ki ≤ n instead of |k| ≤ n. In practice, we found that the additional terms enhance the quality of
the reconstruction much less than the rest of the terms, and they cost significantly more storage. For example
in the second order three-dimensional case, this means 27 coefficients per sample instead of 10.

Remark 6. In real-time practical applications the defined grid is often regular, which means that the basis
polynomials are much simpler to calculate – they are merely translated to different positions.

6 APPLICATIONS OF HERMITE INTERPOLATION FILTERING

6.1 Adini Twist

As noted in the remarks of Section 5, for practical applications, we only store mixed partial derivatives up to
a maximal total order. The rest of the values can be either implicitly assumed to be zero or approximated
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(a) Res: 83, Trilinear (b) Res: 163, Trilinear

(c) Res: 83, Ferguson-Hermite (d) Res: 83, Hermite with Adini twist

Figure 4: 3D example of an implicit surface stored as a discrete field. The trilinear case only interpolates the
function value, while Hermite-interpolation interpolates the first derivatives as well. 4c) assumes zero twist,
and 4d) calculates an approximated mixed partial derivatives similarly to the Adini method.

heuristically from the stored data. The first option is similar to how Ferguson patches [8] are constructed,
and as such we call it Ferguson-Hermite interpolation. Although zeroing the mixed partial derivatives can be
a sensible choice, it often results in visible flat spots in the interpolated result. See Fig. 4c and Fig. 4d for
a comparison. Note the “wrinkles” and the slightly more angular silhouette in the first image where mixed
partials are zeroed out.

For better approximation, and therefore better visual quality, the missing partial derivatives can be ap-
proximated from the rest of the stored data. We propose a particular instance of this approximation in three
dimensions. Our method is similar to how the Adini twist vectors [8] are defined for parametric surfaces. For
parametric surface patches, the Adini twist is defined by fitting a Coons patch [4] to the boundary of the four
neighbouring patches, and evaluating the mixed partial derivative at the appropriate parameter value. For
applying this to our scalar filed in three dimensions, first we define the 3D implicit equivalent of the Coons
patch, then we fit a Coons volume to the surrounding 8 cells of a sample, and finally evaluate the partial
derivatives of the interpolating function in the middle point. These partial derivatives will then be used as the
missing values for the Hermite interpolation.

For the ease of notation, let us denote linear interpolation and its derivative on the interval [u0, u1] between
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(a) 2D domain: parametric surface patch (b) 3D domain: implicit surface

Figure 5: Values needed for the Adini twist calculation. To calculate the mixed partial derivatives at the
center sample (magenta), we need to use the function value at the corner samples (yellow), and the function
value and partial derivatives at the edge midpoint samples (red, green and blue).

two expressions a0 and a1, that may not depend on the interpolation parameter as

L
u,i

ai =
u1 − u

u1 − u0
a0 +

u− u0

u1 − u0
a1, and (32)

D
u,i

ai =
−1

u1 − u0
a0 +

1

u1 − u0
a1. (33)

If [u0, u1] is the unit interval [0, 1], then these simplify to

L
u,i

ai = (1− u)a0 + ua1, and (34)

D
u,i

ai = a1 − a0. (35)

We define the Coons-volume s : [u0, u1]× [v0, v1]× [w0, w1] → R as

s(u, v, w) =L
v,j
L
w,k

s(u, vj , wk) +L
u,i
L
w,k

s(ui, v, wk) +L
u,i
L
v,j

s(ui, vj , w)− 2L
u,i
L
v,j
L
w,k

s(ui, vj , wk), (36)

where s(u, vj , wk), s(ui, v, wk), s(ui, vj , w) are the given functions to interpolate along the edges of the cube,
and s(ui, vj , wk) are the values at the vertices of the cube. Similarly to the Coons patch, we first interpolate
the parallel edges of the domain for the whole volume in each dimension, and subtract the interpolation of the
vertices, so the final volume patch interpolates all given quantities.

We then use the Coons volume to derive the missing mixed partial derivatives for our Hermite interpolation,
akin to the Adini twist method. For the calculation at each sample position, we fit a Coons volume to the
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8 cubic cells surrounding the point – the point is a vertex of each cell as shown in Fig. 5b. The values at
the vertices of the cube are given by the sample values, while the values along the edges are the Hermite
interpolated function values. Each edge therefore consists of two cubic polynomial segments. First, we deduce
the derivatives for a general Coons volume, then we evaluate them in the center point, assuming Hermite
interpolation along the edges.

∂us(u, v, w) = L
v,j
L
w,k

su(u, vj , wk) +D
u,i
L
w,k

s(ui, v, wk)+

+D
u,i
L
v,j

s(ui, vj , w)− 2D
u,i
L
v,j
L
w,k

s(ui, vj , wk)
(37)

∂vs(u, v, w) = D
v,j
L
w,k

s(u, vj , wk) +D
u,i
L
w,k

s(ui, v, wk)+

+D
u,i
L
v,j

s(ui, vj , w)− 2L
u,i

D
v,j
L
w,k

s(ui, vj , wk)
(38)

∂ws(u, v, w) = L
v,j

D
w,k

s(u, vj , wk) +L
u,i

D
w,k

s(ui, v, wk)+

+L
u,i
L
v,j

sw(ui, vj , w)− 2L
u,i
L
v,j

D
w,k

s(ui, vj , wk)
(39)

∂uvs(u, v, w) = D
v,j
L
w,k

su(u, vj , wk) +D
u,i
L
w,k

sv(ui, v, wk)+

+D
u,i

D
v,j

s(ui, vj , w)− 2D
u,i

D
v,j
L
w,k

s(ui, vj , wk)
(40)

∂uws(u, v, w) = L
v,j

D
w,k

su(u, vj , wk) +D
u,i

D
w,k

s(ui, v, wk)+

+D
u,i
L
v,j

sw(ui, vj , w)− 2D
u,i
L
v,j

D
w,k

s(ui, vj , wk)
(41)

∂vws(u, v, w) = D
v,j

D
w,k

s(u, vj , wk) +D
u,i

D
w,k

s(ui, v, wk)+

+D
u,i
L
v,j

sw(ui, vj , w)− 2D
u,i
L
v,j

D
w,k

s(ui, vj , wk)
(42)

∂uvws(u, v, w) = D
v,j

D
w,k

su(u, vj , wk) +D
u,i

D
w,k

sv(ui, v, wk)+

+D
u,i

D
v,j

sw(ui, vj , w)− 2D
u,i

D
v,j

D
w,k

s(ui, vj , wk)
(43)
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For the rest of the derivation let us assume, that the grid is regular, and thus the the Coons volume consist
of eight congruent cuboids as shown in Fig. 5b. If the spacing of the grid is ∆u,∆v and ∆w in the three
directions, then u1 = u0 + 2∆u and the midpoint is at um = u0 + ∆u in the first dimension. The linear
interpolation and its derivative (Eq. (32) and Eq. (33)) evaluated at the midpoint simplifies to

L
u,i

ai(u)
∣∣∣
u=um

=
1

2
a0(um) +

1

2
a1(um), and (44)

D
u,i

a′i(u)
∣∣∣
u=um

=
1

2∆u
(a′1(um)− a′0(um)) . (45)

The value along the edges of the Coons volume is defined by Hermite interpolation of the given grid
values – two one dimensional cubic Hermite segments for each edge. The Hermite segments interpolate the
function value and the derivative in the direction of the edge stored in the grid, at each endpoint and midpoint.
The resulting partial derivatives are listed below with special notation to for better readability. A ‘⊚’ means
alignment with the center point, ‘⊖’ is one step towards the minimum point, and ‘⊕’ is a step on the grid
towards the positive direction along the given axes. For example c = [⊚ ⊚ ⊚] marks the center point, and
[⊖⊚⊕] has coordinates [−∆u, 0,∆w]T relative to the center.

∂uvs(c) =
1

4∆v

(
su[⊚⊕⊕] + su[⊚⊕⊖]− su[⊚⊖⊕]− su[⊚⊖⊖]

)
+

1

4∆u

(
sv[⊕⊚⊕] + sv[⊕⊚⊖]− sv[⊖⊚⊕]− sv[⊖⊚⊖]

)
+

1

4∆u∆v

(
s[⊕⊕⊚]− s[⊕⊖⊚]− s[⊖⊕⊚] + s[⊖⊖⊚]

)
− 1

4∆u∆v

(
s[⊕⊕⊕] + s[⊕⊕⊖]− s[⊕⊖⊕]− s[⊕⊖⊖]

− s[⊖⊕⊕]− s[⊖⊕⊖] + s[⊖⊖⊕] + s[⊖⊖⊖]
)

(46)

∂uws(c) =
1

4∆w

(
su[⊚⊕⊕]− su[⊚⊕⊖] + su[⊚⊖⊕]− su[⊚⊖⊖]

)
+

1

4∆u∆w

(
s[⊕⊚⊕]− s[⊕⊚⊖]− s[⊖⊚⊕] + s[⊖⊚⊖]

)
+

1

4∆u

(
sw[⊕⊕⊚] + sw[⊕⊖⊚]− sw[⊖⊕⊚]− sw[⊖⊖⊚]

)
− 1

4∆u∆w

(
s[⊕⊕⊕]− s[⊕⊕⊖] + s[⊕⊖⊕]− s[⊕⊖⊖]

− s[⊖⊕⊕] + s[⊖⊕⊖]− s[⊖⊖⊕] + s[⊖⊖⊖]
)

(47)

∂vws(c) =
1

4∆v∆w

(
s[⊚⊕⊕]− s[⊚⊕⊖]− s[⊚⊖⊕] + s[⊚⊖⊖]

)
+

1

4∆w

(
sv[⊕⊚⊕]− sv[⊕⊚⊖] + sv[⊖⊚⊕]− sv[⊖⊚⊖]

)
+

1

4∆v

(
sw[⊕⊕⊚]− sw[⊕⊖⊚] + sw[⊖⊕⊚]− sw[⊖⊖⊚]

)
− 1

4∆v∆w

(
s[⊕⊕⊕]− s[⊕⊕⊖]− s[⊕⊖⊕] + s[⊕⊖⊖]

+ s[⊖⊕⊕]− s[⊖⊕⊖]− s[⊖⊖⊕] + s[⊖⊖⊖]
)

(48)
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(a) Bilinear interpolation – 1 scalar/sample (b) Hermite interpolation – 3 scalar/sample

Figure 6: Comparison of bilinear interpolation with Hermite interpolation on 2562 height maps.

∂uvws(c) =
1

4∆v∆w

(
su[⊚⊕⊕]− su[⊚⊕⊖]− su[⊚⊖⊕] + su[⊚⊖⊖]

)
+

1

4∆u∆w

(
sv[⊕⊚⊕]− sv[⊕⊚⊖]− sv[⊖⊚⊕] + sv[⊖⊚⊖]

)
+

1

4∆u∆v

(
sw[⊕⊕⊚]− sw[⊕⊖⊚]− sw[⊖⊕⊚] + sw[⊖⊖⊚]

)
− 1

4∆u∆v∆w

(
s[⊕⊕⊕]− s[⊕⊕⊖]− s[⊕⊖⊕] + s[⊕⊖⊖]

− s[⊖⊕⊕] + s[⊖⊕⊖] + s[⊖⊖⊕]− s[⊖⊖⊖]
)

(49)

To summarize, for the final calculated mixed derivatives (∂uvs, ∂uws, ∂vws, ∂uvws), we need the function
value at the vertices, and the function value and partial derivative in the edge direction at the edge middle
points. The required function values and derivatives are shown in Figure 5b.

6.2 2D – Height Maps

Height maps are used in rendering detailed surfaces over lower resolution geometries [15]. An example rendering
comparison is shown in Figure 6. We tried multiple different configurations for rendering height maps. Com-
pared to a traditional bilinear filtering, Hermite interpolation is much slower due to the additional computation
cost of interpolating by hand, while bilinear filtering is hardware accelerated. For the order 1 construction
we store the gradient in the samples next to the function values, which is often done for normal mapping
already. Calculating the interpolated value in each step of the intersection search proved to be expensive, as
we expected. The performance measurements are in Table 1. We ran the tests on an AMD RX 5700 GPU at
FullHD resolution.

The right column contains the performance test results for using Hermite interpolation for shading only.
We did the intersection calculation on the traditional bilinearly filtered field, but calculated the surface normals
of the Hermite interpolated reconstruction. The normals are exactly calculated since it is easy to differentiate
the higher dimensional Hermite polynomials. This rendering method combines the higher quality visuals of
Hermite interpolation with the performance of bilinear filtering. The visual quality of the Hermite-interpolated
surface is similar to the quality of a bilinear surface of at least twice the resolution, as such we can lower the
resolution with this technique without losing quality and even possibly gaining performance. The order 1 field
representation uses three scalars per sample which is three times more compared to the traditional order 0
storage. However, as noted, this may be counteracted by lowering the resolution.
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Resolution Bilinear Hermite H. normal

128× 128 0.17 ms 0.42 ms 0.21 ms

256× 256 0.20 ms 0.44 ms 0.24 ms

512× 512 0.28 ms 0.49 ms 0.31 ms

Table 1: Performance of height map rendering shown in Fig. 6 at FullHD resolution. The resolution of the
height map impacts the performance through memory read efficiency and cache coherency. The three compared
methods are Bilinear – storing only the height value, Hermite – storing the gradient as well and using Hermite
interpolation, and H. normal – using bilinear interpolation for the intersection search and Hermite interpolation
for the normal calculation. The Hermite interpolated fields store three times more data per sample compared
to the bilinear case but they offer higher quality, allowing for reduced field resolutions.

6.3 3D – Signed Distance Fields

Signed distance fields (SDFs) are versatile implicit representations for surfaces. If the exact function is given
the gradient can be calculated by automatic or numerical differentiation. In the case of triangle meshes
the gradient is defined by the closest triangle. An example is shown using sphere tracing in Figure 7. Our
measurements showed the expected performance hit: the order 1 construction (function value and gradient –
4 floating point values per sample) rendered in an average 1.02 ms, the order 2 construction (up to second
order partial derivatives – 10 values in total) rendered in 1.94 ms. In comparison the hardware accelerated
trilinear filtering on the function values takes about 0.30 ms.

Using Hermite interpolation for shading only in 3D is less appealing than using it for the intersection
search too, since thin features will lose their silhouette. The higher order constructions give better precision
than trilinear interpolation in all examined statistics – maximum, average, median, standard deviation, sign
correctness, different percentiles of the absolute error. However, the second order construction does inhibit
some additional artifacts due to the interpolation method – there are some “flat spots” near the sample position.
As such the best visual quality is achieved by using order 1 Hermite interpolation.

Using the Adini twist method described in Section 6.1 for order 1 Hermite interpolation costs even more
performance in practice, and as seen in Fig. 4 and Fig. 7, it barely changes the surface. As such it is useful
for model storage compression purposes, but it does not provide enough benefits in real-time applications.

Compared to the traditional order 0 (trilinear) representation, the order 1 construction stores four times
more data per sample. Similarly to height mapping, using Hermite interpolation for SDFs allows the usage of
lower resolution fields at similar visual quality. The Adini twist values may be calculated during sampling but
it is very expensive to calculate therefore we suggest to compute the values upon loading the field, and storing
the extra four scalars per sample as a separate texture during runtime, doubling the effective storage cost.

6.4 Storage Optimization

In the two-dimensional case, the gradient can be compressed to the [−1, 1] interval, which is favorable, as
in practice normalized texture types are more efficient compared to floating point types. The compression is
done by calculating the normalized 3D normal of the surface and then storing only the first two coordinates:
[1, 0, ∂xf̂ ]

T × [0, 1, ∂y f̂ ]
T = [−∂xf̂ ,−∂y f̂ , 1]

T.
For the three-dimensional signed distance fields, the gradient is almost everywhere unit length, therefore

it effectively has two degrees of freedom. It can be encoded into two values with for example octahedral
encoding [3]. In both cases unpacking is needed and the stored data cannot be interpolated directly but we
already use manual filtering in Hermite interpolation.
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(a) 323 trilinear, EN (b) 163 Ferguson-Hermite, EN (c) 163 Adini twist, EN

(d) 323 trilinear, CN (e) 163 Ferguson-Hermite, CN (f) 163 Adini twist, CN

Figure 7: Comparison of trilinear interpolation with Hermite interpolation on signed distance fields rendered
with sphere tracing. The top row shows the exact normals (EN) of the models, while the bottom row displays
the same models with normals calculated using central differences (CN).

7 CONCLUSIONS

Hermite interpolation is a useful tool in computer graphics. We derived and proved the interpolation properties
of Hermite interpolation for the general dimensional case and Cn-continuity. The filtering method may be used
in two and three-dimensional problems for smooth surface reconstruction and shading. For hightmaps it is even
usable without performance loss by using half the resolution compared to a traditional bilinearly filtered field,
and calculating the shading normals from the Hermite interpolation. In three dimensions, our construction for
signed distance field may be used if the main focus is on precision and performance is secondary.
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