

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1007

Faster than Fast: Efficient Approximate Boolean Operations on Dense

Triangular Mesh Models

Yuanhui Xiao1 , Ming Chen2 , Shouxin Chen3 and Shenglian Lu4

1Guangxi Normal University, xiao20231115@163.com
2Guangxi Normal University, hustcm@hotmail.com

3Guangxi Normal University, chen.csx@outlook.com
4Guangxi Normal University, lsl@gxnu.edu.cn

Corresponding author: Ming Chen, hustcm@hotmail.com

Abstract. For the processing of large-scale triangular meshes, the speed of Boolean
operations is crucial. This paper presents a new method for performing high-speed

Boolean operations on large-scale triangular meshes using the powerful ray tracing
performance of the latest OptiX engine. The proposed method transforms the two
time-consuming steps of triangle-triangle intersection calculation and inside/outside
classification into a ray tracing problem that can be solved with the OptiX engine,
and solutions are proposed for degenerate and coplanar conditions. The method is

compared to the state-of-the-art QuickCSG, LibIGL, Cork, CGAL Nef, and CGAL
Core methods on the Thingi10K dataset. The experimental results show that the
proposed method has efficiency and stability advantages for enormous triangular
meshes.

Keywords: Boolean operation, ray tracing, intersection calculation, collision

detection, Optix engine.
DOI: https://doi.org/10.14733/cadaps.2025.1007-1026

1 INTRODUCTION

As a fundamental algorithm of three-dimensional (3D) modeling, 3D Boolean operations are
utilized extensively in computer-aided design (CAD)/computer-aided manufacturing (CAM), virtual
reality, computer vision, robotics, and other fields. In recent years, with the improvement of

industrial manufacturing precision and the development of 3D printing technology, the size of
meshes that need to be processed has dramatically increased, posing a challenge to the speed of
Boolean operations.

Unlike tree [13],[14],[33] and volumetric representation [18],[21],[36],[38] methods that are
designed specifically for parallel computation, OptiX [29], NVIDIA's latest RTX ray tracing engine,
performs efficient massively parallel ray intersection testing and creates acceleration structures

based on the bounding volume hierarchy (BVH) [16] tree. In this paper, the two steps of

calculating the triangle-triangle intersection and inside/outside classification are recast as the

http://www.cad-journal.net/
http://orcid.org/0009-0006-2419-2248
http://orcid.org/0000-0003-0506-5308
http://orcid.org/0000-0002-4756-7763
http://orcid.org/0000-0002-4957-9418
mailto:xiao20231115@163.com
mailto:hustcm@hotmail.com
mailto:chen.csx@outlook.com
mailto:lsl@gxnu.edu.cn
mailto:hustcm@hotmail.com

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1008

problem of ray and triangle intersection. These two steps are accelerated by the OptiX engine,
thereby accelerating the entire Boolean operation.

Figure 1: Boolean operation procedure of triangular mesh based on ray tracing. (a) Input two
closed, nonself-intersecting 2-manifold models. (b) Use ray tracing to perform the intersection test

and compute the intersection points; the red portion of the diagram represents the set of
intersecting triangles. (c) Use the CDT algorithm to triangulate the intersecting triangle. (d) Use
ray tracing to complete the inside/outside classification; the red portion of the figure is determined
to be inside another model. (e) According to Boolean operation rules, the dragon-bunny result is
obtained.

The proposed method requires the input triangular meshes to be closed, orientable, nonself-
intersecting, and nondegenerate 2-manifolds. Preprocessing is necessary if the aforementioned
conditions are not satisfied. This paper's method consists of three main steps (see Fig. 1):

Step 1: Intersection test and intersection calculation (see Fig. 1(b)). Rays were emitted along
each side of the triangle, intersection tests were conducted with another model involving Boolean

operations, and the intersections were calculated. This step is accomplished using the ray tracing

method; the intersection points are calculated using Eq. (2), and degenerate cases are handled.

Step 2: Triangle tessellation (see Fig.1 (c)). Using the constrained Delaunay triangulation (CDT)
algorithm [10], the intersection points in each intersecting triangle were connected to constrained
line segments as input, and the intersecting triangles were triangulated. Each intersecting triangle
was subdivided into multiple subtriangles following segmentation. In this step, abnormal triangles
are processed to increase stability. This step is accelerated in parallel using the OpenMP [6] policy

and runs on the CPU.

Step 3: Inside/outside classification (see Fig. 1(d)). After triangle tessellation, there are no
triangles that are both inside and outside the target model; all triangles are either inside or outside.
The final essential step is to classify all triangles as either inside or outside and then to retain the
triangles in accordance with the rules of Boolean operations to obtain the final result of Boolean
operations(see Fig.1 (e)). In this step, ray tracing is utilized once more to complete the
inside/outside classification.

The main contributions of this paper are as follows:

(d) (e)

(a) (b) (c)

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1009

(1) Triangle-triangle intersection detection was transformed into a triangle-ray intersection
problem. Using ray tracing, the intersection region and intersection points of the model were
determined.

(2) In this paper, the model's topological information was completely disregarded for triangle

inside/outside classification. Ray tracing technology was extensively utilized to classify each
triangle as belonging to the inside/outside.

The rest of this paper is arranged as follows: Section 2 reviews the literature on Boolean
operations; Section 3 describes how the NVIDIA OptiX ray tracing engine works and how it
computes the intersection points between rays and triangles. Section 4, 5, and Section 6 provide
details of the proposed methods. Section 7 shows experimental and comparative results; Section 8
summarizes the paper.

2 RELATED WORK

The primary research areas for triangular mesh Boolean operations are speed and stability. To
accelerate Boolean operations, the two methods of bounding volumes [1],[20] and space
partitioning [23] are widely used. The bounding volume method includes the axis-aligned bounding
box (AABB) [1],[23],[31], oriented bounding box (OBB) [7],[15],[37], and K-Dop [22]. The
primary objective of the preceding method is to construct a bounding box that drastically reduces

the number of triangles used for intersection tests. Compared to the bounding volume methods,
the advantage of space partitioning methods is that it is easier to implement parallel operations.
Space partitioning methods include octrees [8],[14],[30],[33], uniform grids [11],[12], kd-trees
[13], binary space partitioning (BSP) trees [3],[27] and so on. Douze et al. [13] used kd-tree
acceleration and implemented fast Boolean operations on meshes through parallel computation.
Campen and Kobbelt [5] combined octrees and BSP to increase efficiency and decrease storage

costs.

Another bottleneck of Boolean operations is the problem of stability, which is also the focus of
many scholars. Three factors, namely, self-intersection, primitive degeneration, and rounding
errors of floating-point arithmetic, affect the stability and exactness of Boolean operations. A
common idea is to describe the model using implicit representations, including vertex-based
representations (V-reps) and plane-based representations (P-reps). Compared with V-reps, P-reps
have better stability and can obtain exact results even under fixed precision arithmetic. Literature
on the V-rep approach includes the work of Douze et al. [13], De Magalha et al. [12], and Zhou et

al. [39]. Douze et al. [13] improved performance by sacrificing the stability of the algorithm; they
used winding number vectors in combination with a smart pruning strategy to evaluate Booleans
quickly. Zhou et al. [39] used the arbitrary precision algorithm to compute all triangle-triangle
intersections. The triangle is determined as part of the result by the winding number of the
corresponding volumetric cell. De Magalha et al. [12] used large rational numbers to avoid

rounding errors and deal with the vertices of one object incident on the face of the other object

through simulation of simplicity, further improving stability. Epsilon-tweaking [14] and numerical
perturbation [13] are also used to improve stability and achieve quasi-robustness.

The method of P-reps is described in the literature [9],[17],[28],[34],[35]. Hachenberger et al.
[17] computed Boolean operations by combining an exact algorithm with the plane-based Nef-
polyhedron [28]. Although quite reliable, their method has performance and memory consumption
issues. To balance stability and efficiency, Sheng et al. [34] used a hybrid representation method
that combined V-reps and P-reps. P Trettner et al. [35] used a plane-based representation for the

input meshes along with recently introduced homogeneous integer coordinates to ensure
exactness and used a formulation of the algorithm via generalized winding numbers and mesh
arrangements to ensure reliability and robustness. Cherchi et al. [9] used an improved mesh
arrangement method and an internal and external classification system based on exact ray

projection to ensure reliability and robustness. However, when used to large-scale triangular
meshes, which usually have more than 200k triangles, it still shows limitations.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1010

3 EVALUATION AND CALCULATION OF INTERSECTIONS

The proposed method is implemented based on the NVIDIA OptiX ray tracing engine [29]. This
section briefly introduces how to calculate the intersection of a ray and a triangle using its
properties.

3.1 Ray-Triangle Intersection

The proposed method requires many ray-triangle intersection detections. In this paper, the emitted

ray ()tR can be determined by the origin O and a normalized direction D :

 t t()=O+R D (3.1)

Using ray tracing, it is possible to determine if ()tR intersects a target triangle. A method

similar to the Moller-Trumbore algorithm [26] is used to calculate the intersection points: a

triangle is defined by three vertices 0V , 1V and 2V , and a point, T(,)u v , on a triangle is given

by
 u v u vu v 0 1 2T(,)=()1- - V + V + V (3.2)

where (,)u v are the barycentric coordinates, which must fulfill 0u , 0v and 1u v+ .

Computing the intersection between the ray, ()tR , and the triangle, T(,)u v , is equivalent to

setting () T(,)t u v=R ; then, rearranging the terms gives:

 ()2

t

u

v

= −

1 0 0 0- V - V V - V O VD (3.3)

By solving the linear system of equations above, the barycentric coordinates (,)u v and the

distance t from the ray origin to the intersection point can be found.

We set the tracing range min maxt ,t when utilizing ray tracing for intersection calculation or

detection (see Fig. 2). If the distance t of the intersection points determined by tracing falls

within this range, the objects are deemed to be intersecting; otherwise, they are deemed to be
nonintersecting.

Figure 2: The ray intersects the triangle at point T ; min maxt ,t are preset tracing ranges.

4 INTERSECTION COMPUTATION

Before calculating the intersection point, it is typically necessary to make an intersection

determination: we must determine which pairs of triangles may intersect, and then begin the
calculation of the intersection point to save time. Object or space hierarchy algorithms, such as
BVH[25] and octree[32], are frequently used to search for rays intersecting triangles. To
increase efficiency, this paper uses the specialized ray tracing acceleration structures of the

OptiX ray tracing engine to complete the intersection tests, which are performed entirely on the
GPU.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1011

4.1 Intersection Test

{1,2}

=(,)i j ji
M V T denotes the meshes engaged in Boolean operations, where jV is the set of

vertices and Tj is the set of triangles. iM is a closed, orientable, nonself-intersecting and

nondegenerate 2-manifold. When iM is input, the topological connection information of its

points, edges, and faces is constructed by traversal. This paper transforms the triangle
intersection test between 1M and 2M into a ray and triangle intersection test by emitting rays

along each edge of every triangle in Tj . As shown in Fig. 3, a ray (yellow arrow) is emitted

along each edge of the triangle. Using the emission ray 1R along edge 1 2VV of triangle 1T as an

illustration, the parameters are constructed as follows:
• Set vertex 1V as the origin O of the ray.

• Set the normalized direction of vector 1 2VV as the ray direction D.

• Set 0t =min , | |t = 1 2VVmax , and | |1 2VV as the distance between 1V vertices 2V .

In the OptiX ray tracing engine, any hit program is invoked when the acceleration traversal
finds that a ray intersects a primitive (triangle). In the any hit program, the barycentre

coordinates (,)u v of the intersection point and the index of the intersected triangle can be

obtained by invoking the API; the intersection point iP is then computed using equation 3.2.

The intersection calculated using equation 3.2 moves along the surface due to rounding error.

To improve the accuracy of the intersection iP , the intersection iP is projected onto the

original ray. The set iE stores the index IDs of the two adjacent triangles that the ray shares,

and the set Hi stores the index ID of the triangle that the ray hits. The relationship between

the two pieces of information and the intersection iP is recorded as , , }H{ i i iE P and utilized in

the next step of triangle tessellation.

Figure 3: Rays are emitted along the edges of iM , and ray tracing is performed to complete

the intersection test and calculation.

4.2 Handling Degenerate Situations

Most of the intersection cases belong to the two cases listed in Fig. 4, for which the correct
intersection points can be calculated through the method of Section 4.1. Due to the accumulation
of numerical error in the single-precision floating-point calculations of the OptiX engine and the
characteristics of the OptiX engine itself, in some cases, it is not possible to stably obtain the

intersection points. There are two cases requiring special handling: two triangles intersecting at a
point or edge and coplanar triangles.

Due to the high efficiency of the OptiX engine, this paper performs no filtering and assumes
that the three conditions listed above are possible on all edges. This paper addresses the above
two cases by emitting more rays. The specific methods are as follows:

Intersection at a point or on an edge: This includes the case of two triangles intersecting at a

point (see Fig. 5(a)) or on an edge (see Fig. 5(b)). As shown in Fig. 5(a), the rays 1R emitted

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1012

along edge 1 2VV and rays 2R emitted along edge 2 3V V intersect triangle 'T at the same points

2P(V) (points P and 2V share the same location); point P is the end of ray 1R and the origin of

ray 2R . In this case, the intersection occurs precisely at the boundary values of the trace range

0t =min and | |t = 1 2VVmax . Due to the accumulation of numerical error, OptiX occasionally fails to

obtain the intersection point. This paper applies a small perturbation 610− to the origin and end

points of each edge before and after tracing and then emits an additional ray to detect the
presence of an intersection.

(a) (b)

Figure 4: The two most common triangle-triangle intersection cases. The triangles 'T and T

belong to two input models. (a) The rays '
1R and '

3R emitted from 'T intersect triangle T at points

1P and 2P , respectively. (b) The ray '
1R emitted from triangle 'T and the ray 3R emitted from

triangle T intersect at points 1P and 2P , respectively.

(a) (b)

Figure 5: Two triangles intersect at a point or at an edge. (a) The rays 1R and 2R emitted from

triangle T intersect triangle 'T at point 2P(V) . (b) The rays 1R and 2R emitted from triangle T

intersect triangle 'T at points 1 2P(V) and 2 3P (V) , respectively, where *T is a triangle adjacent to T .

Coplanar: Coplanar refers to the case in which two triangles intersect in the same plane.The
OptiX engine directly determines that the emitted rays do not intersect for coplanar triangles.

Notice that coplanar triangles are divided into two regions (T and 'T in Fig. 6(b)): a coplanar

region 'T T and noncoplanar region ' '() ()T T T T− − . The edges of the coplanar triangle clip the

coplanar region and the noncoplanar region (red dashed box in Fig. 6(a)), so finding the

intersection point of the coplanar triangle at the boundary of the two areas is crucial for separating
the coplanar region from the noncoplanar region. Since the input mesh is closed and is a 2-
manifold, the triangles at the edges of each coplanar region must necessarily intersect adjacent

triangles. As shown in Fig. 6(a), if triangle 'T is coplanar with triangle T , then triangle 'T must

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1013

intersect triangle *T , which is adjacent to triangle T . At the boundary of the coplanar region, the

ray 1R emitted along edge 2 3V V must intersect with *T , and the intersection point P between the

coplanar and noncoplanar regions can be obtained.

Numerous experiments demonstrate that for the intersection points at the boundaries of
coplanar regions, rays emitted in one direction of an edge may not intersect, but rays emitted in
the opposite direction must intersect. In this paper, after ray tracing is completed along each edge,
ray tracing is carried out again in the opposite direction. If an intersection occurs, the index is
compared with the triangle index hit during the first ray tracing to determine whether it is a

missing intersection. Since one side of a triangle can only intersect another triangle once and the
index of each triangle is unique, it is guaranteed that no duplicate intersections are introduced.

(a) (b)

Figure 6: (a) The triangle 'T is coplanar with T , and *T is an adjoint triangle of T and is not

coplanar with 'T and T . At the boundary of the coplanar region, the ray 1R emitted along the

edge 2 3V V intersects with *T at point P . (b) The coplanar region 'T T and noncoplanar region

' '() ()T T T T− − .

5 TRIANGLE TESSELLATION

After the intersection calculation, the intersection points in each intersecting triangle are known,
and then the intersection points are connected into line segments as constraints (yellow line
segments in Fig. 7(b)). This information is input into the CDT [10] algorithm to complete the
triangulation in 2D (see Fig. 7(c)). To increase the speed of this operation, this paper uses OpenMP
[6] to implement the CDT algorithm in parallel, which is implemented on the CPU.

 (a) (b) (c)

Figure 7: An overview of triangle tessellation. (a) Compute the intersection to obtain the
intersection points. (b) Connecting intersecting points to line segments as constraints. (c) Using
the CDT algorithm to perform triangulation in 2D.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1014

5.1 Constrained Line Segment

Before using the CDT algorithm to conduct triangulation of intersecting triangles, we need to

connect the intersection points as constraint segments. Comparing the ID sets iE of the emitting

ray triangle index and Hi of the intersecting triangle index connects the two intersection points.

Assume the two points , , }HP={ i i iE P and ' ' ', , }H QQ={ i i iE , where Pi and 'Qi are the coordinates of

the two points. 0 iT E , 1 iT H , ' '
0 iT E and ' '

1 iT H . When the following two conditions are

satisfied by the four triangle indices 0T , 1T , '
0T and '

1T , the points P and Q are joined as a

constrained line segment.

• If '
0 0T T= and '

1 1T T= , then connect points P and Q . As shown in Fig. 4(a), 1 2PP is a

constrained line segment.

• If '
0 1T T= and '

1 0T T= , then connect points P and Q . As shown in Fig. 4(b), 1 2PP is a

constrained line segment.

When a ray intersects multiple triangles at one point (see Fig. 8), the Optix engine can return
only one index of intersecting triangles, and the constrained line segment will be missing. In this
case, the intersection points are identified by evaluating the barycentric coordinate components

(,)u v,1- u - v , and then the topological information of the vertices, edges, and faces is queried to

determine the index ID of the triangle corresponding to the intersection points. If one of the
components of the barycentric coordinates is 1, the intersection is on the vertex (see Fig. 8(a)),
and if one of the components of the barycentric coordinates is 0, the intersection is on one edge

(see fig. 8(b)).

(a) (b)

Figure 8: The rays intersect with multiple triangles at one point. (a) The intersection point is on
one vertex. (b) The intersection point is on one edge.

5.2 Triangulation

In this step, the triangle is triangulated using the CDT algorithm in the third-party library Fade2D
[24] in 2D. To ensure reliability and robustness, we projected the vertex and intersection segment

of the intersecting triangle onto the axis alignment plane with the largest area and then
triangulated it. Assume that the normalized normal vector of the triangle is n and that the

normalized direction vectors of the X-, Y-, and Z-axes are x , y , and z , respectively. The cosine

of the projection angle is computed using the formula cos =max{| |,| |,| |}n x n y n z , and the plane

with the greatest cos is chosen as the projection plane. After projection, the vertex order of the

triangle may change, which must be reverted.

Due to the influence of the error of the calculation accuracy on the intersection points, the
intersection points that should be on the edge of the triangle are not on the edge lines, resulting in

incorrect triangulation results. As shown in Fig. 9, when the intersection points are not on the

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1015

edges of the triangle, the triangulation produces a triangle with an area close to 0. We provide a
real-world illustration of this situation (see Fig. 10). When the point of intersection is very close to
the boundary line, the following measures are taken:

• The two vertices of each edge and the intersection points obtained by tracing along this

edge are put into the point set iP . If all three vertices of a triangle in the triangulation

result belong to iP , the triangle is eliminated and reconstructed locally. In ray tracing, the

intersection points can be obtained consecutively along the direction of tracing, making iP

simple to construct.

• If the distance d between two points in an intersecting triangle is less than -610 , the points
are merged into one.

(a) (b) (c)

Figure 9: The error in calculating the intersection points results in an abnormal triangle whose area
after triangulation is close to 0. (a) No calculation error exists, and the correct triangulation result
is obtained. (b) The calculation error of the intersection point, which should be on the boundary

line, is shifted to the red point, and after triangulation, a triangle with a near-zero area is
generated. (c) Intersecting triangles cannot be triangulated correctly, resulting in incorrect results.

(a) (b)

Figure 10: A real-world illustration. (a) Due to calculation errors, the result is a lot of tiny triangles.

(b) After taking measures, the right result is obtained.

6 INSIDE/OUTSIDE CLASSIFICATION

After triangle tessellation, each triangle is either completely inside or completely outside of the
model. Zhou et al. [39] and P Trettner et al. [35] used the winding number to evaluate the model
arrangement and inside/outside classification. We utilize the high efficiency of OptiX intersection
judgement and adopt a simple method to complete inside/outside classification: A ray is emitted

from the centre of gravity G of each triangle towards the centre C of the model, and then the

inside or outside the triangle is determined by the sign of cos , where is the angle between the

direction vector D of the ray and the normal vector n of the nearest intersecting triangle (see

Fig.11). As ray tracing is performed very quickly on the GPU, the entire procedure is completed in

a short amount of time. The specific steps are as follows:

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1016

• Assuming the intersecting models are 1M and 2M , a slight shift from each triangular

centre of gravity G of 1M along its own normal direction (the translation is to prevent

coplanar cases) is performed, and then G is used as the ray's origin O .

• GC is the direction vector of the ray, and C is the centre of model 2M .

• Set 0t =min and tmax to be the length of the model 1M bounding box.

Since the input model is closed, the ray must hit the triangle of model 2M . In addition to the

case where the rays are coplanar with the triangle, there are two cases where the rays do not

intersect: one where the centre of the model is empty (see Fig. 12) and the other where the two
models do not intersect. In both cases, the triangle is outside the model 2M . To reduce the

coplanar probability, a ray is emitted in the opposite direction when the rays do not intersect. The

inside/outside classification rules are as follows:
• If rays intersect and 0 cos , it is determined that the triangle lies inside model 2M ;

otherwise, it is determined that the triangle lies outside model 2M .

• If the rays do not intersect, another ray is emitted along the opposite direction. If both rays
do not intersect, then the triangle is determined to be outside.

After the above steps, all triangles in models 1M and 2M are classified as belonging to the

inside/outside. The final Boolean operation result is obtained by applying the reservation removal
rules(see Table 1).

Operation type Kept triangles for 1M Kept triangles for 2M

1 2M M Inside 2M Inside 1M

1 2M M Outside 2M Outside 1M

1 2M -M Outside 2M Inside 1M

12M -M Inside 2M Outside 1M

Table 1: The rules of keeping triangles for 1M and 2M .

Figure 11: 1M and 2M represent two models. The normal vectors (yellow arrows) of triangles in

model 2M are directed outwards, and 1C is the centre of model 2M . The ray emitted by the

triangle of the barycentre 1G intersects 2M at point 1P , and 1 0 cos , so the triangle is judged to

be outside 2M . The ray emitted by the triangle of the barycentre 2G intersects 2M at point 2P ,

and 2 0 cos , so the triangle is judged to be inside 2M .

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1017

Figure 12: The centres of the two models are empty, and rays emitted toward the model centres
may not intersect.

7 EXPERIMENTS AND RESULTS

The proposed algorithm is implemented in C++, and the test PC is configured with an Intel(R)
Xeon(R) Silver 4110 CPU @ 2.10 GHz x 2 and an NVIDIA Ge-Force RTX 3090. First, we compare
the running times, and the comparison methods include CGAL Nef Polyhedra [4], CGAL Corefine

[4], Cork [2], QuickCSG [13] and Zhou's method [39] in LibIGL [19]. For a more thorough
evaluation of the performance of the proposed method, a self-union comparison was conducted on
the Thingi10K [40] dataset with QuickCSG, the quickest Boolean operation algorithm currently
available. Second, the Hausdorff distance was used to validate the method's precision and
robustness. Methods used for this comparison include CGAL Nef Polyhedra [4], QuickCSG[13], and

Zhou's method [39] in LibIGL [19].

7.1 Comparison with State-of-the-Art Methods

First, six examples were used to compare the proposed algorithm with CGAL Nef Polyhedra [4],
CGAL Corefine [4], Cork [2], QuickCSG [13], and Zhou's method [39] in LibIGL [19]. The number
of input triangles ranges from approximately 10k to 1.6 M, and the models come from the
Thingi10K dataset. The running results of the union, intersection and difference sets of the six

experiments are shown in Table 2 and Fig. 17. Table 2 demonstrates that the proposed methods
are quicker than all other methods except for Example 1. Example 1 demonstrates that when the
number of triangles in the input model is approximately 10k, the operating time of the proposed
method is comparable to that of the QuickCSG method. The reason for this is that when the
number of input triangles is minimal, the proposed method requires a significant amount of time to
construct a ray tracing pipeline, resulting in a slower overall time than QuickCSG. In the remaining

examples, the method is faster than QuickCSG. This is because the proposed method utilizes the

GPU to perform intersection computations and face classification, which significantly accelerates
these two steps. As the number of input triangles increases, the advantages become increasingly
apparent.

In addition to the number of triangles in the input model, the number of intersecting triangles
also affects the runtime. The effect of the number of intersecting triangles on the runtime of the
proposed method was evaluated in three examples and compared to QuickCSG. Three self-union

experiments were conducted by slightly rotating the model three times so that the number of input
triangles remains constant, and the number of intersecting triangles increases. The number of
input triangles for the three examples was 300k, 2.17 M, and 2.20 M, respectively, and the input
models were derived from the Thingi10K dataset and the QuickCSG project homepage. The
running results of the union, intersection, and difference sets of the three cases are shown in Fig.
18 and Table 3. The experimental results indicate that the number of triangles in the input model

remains constant. Both the proposed method and the QuickCSG method slow as the number of

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1018

intersecting triangles increases, but the proposed method takes less time overall. The time spent
in each stage is shown in Table 3. The proposed method's time evidently increased primarily at the
tessellation stage with the increase in the number of intersecting triangles. Due to the advantage
of GPU high-speed parallel computing, the time-consuming changes in intersection computation

and inside/outside classification steps are not obvious.

Example Model* Face Num! Intersect

Face Num

Ours QuickCSG LibIGL Cork CGAL Nef CGAL Core

1 74890 104738 15k 0.4K 0.02 0.02 3.51 1.10 26.15 1.18

2 45090 46780 38k 1K 0.04 0.07 25.52 2.36 73.93 2.87

3 57937 441711 147k 2K 0.05 0.22 131.8 9.23 571.6 18.23

4 461109 1063863 324k 4.3K 0.07 0.46 69.905 24.9 4331.5 25.19

5 99269 87687 630k 15.6K 0.16 1.19 147.11 48.17 - 59.88

6 461112 461115 1.6M 29.1K 0.25 2.81 368.46 90.40 - 118.7

- The process is terminated after running for a long time.

* 1 2A A , 1A and 2A are the numbers of the models in the Thingi10K dataset.

! The face num is the number of input triangles.

Table 2: Computation time statistics (seconds).

Model Tests Face Num! Intersect

Face Num

QuickCSG Ours*

Total Step1 Step2 Step3 Step4

Armadillo

Armadillo

1 300k 14.7k 0.652 0.127 0.031 0.004 0.092 0.0004

2 18,1k 0.742 0.184 0.031 0.004 0.149 0.0004

3 24.8k 0.863 0.213 0.031 0.004 0.178 0.0004

Buddha

Buddha

1 2.17M 73.7k 3.604 0.503 0.079 0.007 0.416 0.001

2 83.1k 3.941 0.551 0.078 0.008 0.464 0.001

3 99k 4.610 0.617 0.082 0.009 0.525 0.001

815486

815486

1 2.20M 68.3k 2.857 0.522 0.084 0.007 0.430 0.001

2 129.9k 3.576 0.806 0.080 0.009 0.716 0.001

3 193.9k 5.028 1.095 0.083 0.009 1.001 0.002

* Steps 1, 2, 3, and 4 are building ray-tracing pipe, intersection computation, triangle tessellation
and in/out classification, respectively.

! The face num is the number of input triangles.

Table 3: Computation time statistics (seconds).

7.2 Self-Union on Thingi10K Dataset

For a more comprehensive evaluation of the performance of the proposed method, a self-union
experiment was conducted on the Thingi10K dataset [40]. The Thingi10K dataset contains

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1019

9956 .stl files in total. The proposed method necessitates that the input model be a triangular solid
mesh without self-intersection that is a closed 2-manifold; 5050 out of 9956 models satisfy this
aforementioned criterion. This study evaluates each model by rotating it so that it self-intersects.
As demonstrated in Section 7.1, only the QuickCSG method is comparable to the proposed method

in terms of performance, so this section only compares the self-union operation to the QuickCSG
method. The number of input triangles is used to number the 5050 models in ascending order. The
models were separated into three categories based on the number of input triangles: fewer than
10k, 10k to 50k, and greater than 50k. There were 3,237, 1,144, and 669 models in these ranges,
respectively. The average number of input triangles in the input models for the three groups was
2.8k, 20.3k, and 264k, respectively. The running times of the comparison experiments are shown
in Fig.13. In the comparison experiment with fewer than 10k input triangles, the mean value of

the proposed method was slower than that of QuickCSG. In comparison experiments with the

number of input triangles ranging from 10k to 50k, the mean value of the proposed method was
slightly faster than that of the QuickCSG method. In comparison experiments with greater than
50k input triangles, the mean time of the proposed method was approximately five times faster
than that of QuickCSG, especially in the second half of the line chart, when the number of triangles
was greater than 1 M and the maximum number was approximately 5 M.

Fig.14 demonstrates that when the number of input triangles is small, the building ray-tracing
pipe phase becomes the bottleneck of the proposed method. As the number of input triangles
increases, the tessellation stage becomes the bottle-neck of the proposed method. Because the
intersection computation and in-side/outside classification phases are executed on the GPU, the
elapsed time is minimal.

7.3 Correctness and Robustness

To verify the correctness and robustness of the proposed algorithm, the Hausdorff distance

between the proposed algorithm's results and the exact method's results was calculated. We
selected 2000 models from the Thingi10K dataset with 1k to 10k input triangles. To ensure the
reliability of the experiment, the results of the CGAL Nef Polyhedra [4] exact method were taken
as the true value, and the proposed method was compared with QuickCSG [13] and Zhou's

method [39] in LibIGL [19]. Among the comparison methods, CGAL Nef Polyhedra and Zhou's
method in LibIGL are exact methods, and the proposed method and QuickCSG method are inexact
methods. The Hausdorff distance distribution of 2000 test cases is shown in Fig.15. Since CGAL
Nef Polyhedra and Zhou's method in LibIGL are both exact methods, their results are nearly
identical. The QuickCSG method has a 57.5% distribution in the interval (1E-12, 1E-5), and the
proposed method has a 93.8% distribution in the interval (1E-8, 1E-5). Although the QuickCSG
method is more accurate than the proposed method, the proposed method is more reliable and

robust. Based on the distribution of the interval (1E-5, 1E-2), the proposed method produces some
incorrect results due to its imprecise calculation and the sensitive threshold. Compared to the

QuickCSG method, the proposed method makes significant improvements.

To further demonstrate that the proposed method can deal with coplanar conditions, two more
complex coplanar cases are tested, and the results are compared with those of Zhou's method in
LibIGL. As shown in Fig.16, the red box in the input contains coplanar areas (i.e., green and blue
frequently alternate), with up to three coplanar areas per case. Compared with Zhou's method in

LibIGL, the precise method in the coplanar region shows that the output results of union and
intersection are consistent.

8 CONCLUSIONS

This paper proposes a new, straightforward and effective method for Boolean operations on large-
scale triangular meshes. The main idea is to convert intersection computation and inside/outside
classification, two typical steps in Boolean operations, into a ray and triangle intersection problem,

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1020

which is solved by the GPU using the NVIDIA OptiX ray tracing engine. The performance of these
two steps is significantly enhanced, and a feasible solution for degeneracy is proposed.

Figure 13: Three groups of self-union comparison experiments, (a), (b), and (c), were conducted

between the proposed method and the QuickCSG method, with the number of input triangles
ranging from fewer than 10k to between 10k and 50k and greater than 50k, respectively. Models

are numbered by the number of input triangles in ascending order. The proposed method in the

(a)

(b)

(c)

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1021

first group of experiments is slower than the QuickCSG method, while the proposed method in the
second and third groups of experiments is faster. As the number of input triangles increases, the
proposed method's performance advantage becomes increasingly apparent.

Figure 14: The time percentages of different stages are represented in different colours. Each one-
pixel column represents a test. The main bottleneck of our algorithm is triangle tessellation.

The results show that the proposed method is more efficient and reliable than QuickCSG, which is
also an inexact method for large-scale triangular meshes. This method can be applied to
applications that do not require accurate Boolean operations but require real-time results, and the
output results can also be used as the initial value and reference value of accurate Boolean
operations to improve their speed. One future improvement is to ensure accuracy and robustness
by building a robust ray-tracing engine. Improving the performance of the triangulation phase is
another goal.

Figure 15: The Hausdorff distance distribution for 2000 test cases. The results of the proposed
method are mainly distributed in the interval (1E-7,1E-5]. The results of the QuickCSG method are
mainly distributed in the interval (1E-10,1E-8]. The results of the LibIGL method are mainly
distributed in the interval (0,1E-12].

REFERENCES

[1] Bergen, G.v.d.: Efficient collision detection of complex deformable models using aabb trees.
Journal of graphics tools, 2(4), 1–13, 1997.
http://doi.org/10.1080/10867651.1997.10487480

[2] Bernstein, G.: Cork Boolean library, https://github com/gilbo/cork 2013.

http://www.cad-journal.net/
http://doi.org/10.1080/10867651.1997.10487480

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1022

[3] Bernstein, G.; Fussell, D.: Fast, exact, linear booleans. In Computer Graphics Forum, vol. 28,
1269–1278.Wiley Online Library, 2009. http://doi.org/10.1111/j.1467-8659.2009.01504.x

[4] Board, C.: Cgal, computational geometry algorithms library, http://wwwcgalorg.

Figure 16: (a) are two inputs for complex coplanar cases. The red boxes are coplanar areas. (b)
and (c) are the outputs of the proposed method, which are the union, intersection, and difference

sets. In the coplanar region, the proposed method determines the coplanar region of the green
model to be outside and the coplanar region of the blue model to be inside. (d) and (e) are the
outputs of Zhou's method in LibIGL, which are the union, intersection, and difference sets. In the
coplanar region, the result of Zhou's method in LibIGL has both green and blue.

(a) (b)

(a)

(b) (c)

(d) (e)

http://www.cad-journal.net/
http://doi.org/10.1111/j.1467-8659.2009.01504.x
http://wwwcgalorg/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1023

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 17: The outputs of the six examples in Table 1 are the union, intersection, and difference
sets. The model is from the Thingi10K Dataset. (a), (c), (e), (g), (i) and (k) are the outputs of the

proposed method. (b), (d), (f), (h), (j) and (l) are the outputs of Zhou's method in LibIGL.

(a) (b)

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1024

(c) (d)

(e) (f)

Figure 18: The outputs of the three examples in Table 2 are the union, intersection, and difference
sets. The model is from the Thingi10K Dataset and QuickCSG project homepages. (a), (c) and (e)

are the outputs of the proposed method. (b), (d) and (f) are the outputs of Zhou's method in
LibIGL.

[5] Campen, M.; Kobbelt, L.: Exact and robust (self-) intersections for polygonal meshes. In

Computer Graphics Forum, vol. 29, 397–406. Wiley Online Library, 2010.

http://doi.org/10.1111/j.1467-8659.2009.01609.x
[6] Chandra, R.: Parallel programming in OpenMP. Morgan kaufmann, 2001.
[7] Chang, J.W.; Wang, W.; Kim, M.S.: Efficient collision detection using a dual obb-sphere

bounding volume hierarchy. Computer-Aided Design, 42(1), 50–57, 2010.
http://doi.org/10.1016/j.cad.2009.04.010.

[8] Chen, Y.; Wang, C.C.: Layer depth-normal images for complex geometries: Part one-

accurate modeling and adaptive sampling. In International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, vol. 43277, 717–

728,2008.http://doi.org/10.1115/DETC2008-49432.
[9] Cherchi, G.; Pellacini, F.; Attene, M.; Livesu, M.: Interactive and robust mesh booleans. ACM

Transactions on Graphics (TOG), 41(6), 1–14, 2022.
http://doi.org/10.1145/3550454.355546.

[10] Chew, L.P.: Constrained delaunay triangulations. In Proceedings of the third annual

symposium on Computational geometry, 215–222, 1987.
[11] de Magalhaes, S.V.; Andrade, M.V.; Franklin, W.R.; Li, W.; Gruppi, M.G.: Exact intersection

of 3d geometric models. In Geoinfo 2016, XVII Brazilian Symposium on GeoInformatics,
2016. http://doi.org/10.1111/j.1467-8659.2009.01545.x.

[12] de Magalhães, S.V.G.; Franklin, W.R.; Andrade, M.V.A.: An efficient and exact parallel
algorithm for intersecting large 3-d triangular meshes using arithmetic filters. Computer-
Aided Design, 120, 102801, 2020. http://doi.org/10.1016/j.cad.2019.102801.

[13] Douze, M.; Franco, J.S.; Raffin, B.: Quickcsg: Fast arbitrary boolean combinations of n solids.

arXiv preprint arXiv:1706.01558, 2017. http://doi.org/10.48550/arXiv.1706.01558.

http://www.cad-journal.net/
http://doi.org/10.1111/j.1467-8659.2009.01609.x
http://doi.org/10.1016/j.cad.2009.04.010.
http://doi.org/10.1115/DETC2008-49432.
http://doi.org/10.1145/3550454.355546.
http://doi.org/10.1111/j.1467-8659.2009.01545.x.
http://doi.org/10.1016/j.cad.2019.102801.
http://doi.org/10.48550/arXiv.1706.01558.

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1025

[14] Feito, F.R.; Ogáyar, C.J.; Segura, R.J.; Rivero, M.: Fast and accurate evaluation of
regularized boolean operations on triangulated solids. Computer-Aided Design, 45(3), 705–
716, 2013. http://doi.org/10.1016/j.cad.2012.11.004.

[15] Gottschalk, S.; Lin, M.C.; Manocha, D.: Obbtree: A hierarchical structure for rapid

interference detection. In Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, 171–180, 1996. http://doi.org/10.1145/237170.237244.

[16] Gunther, J.; Popov, S.; Seidel, H.P.; Slusallek, P.: Realtime ray tracing on gpu with bvh-
based packet traversal. In 2007 IEEE Symposium on Interactive Ray Tracing, 113–118. IEEE,
2007. http://doi.org/10.1109/RT.2007.4342598.

[17] Hachenberger, P.; Kettner, L.; Mehlhorn, K.: Boolean operations on 3d selective nef
complexes: Data structure, algorithms, optimized implementation and experiments.

Computational Geometry, 38(1-2), 64–99, 2007.

http://doi.org/10.1016/j.comgeo.2006.11.009.
[18] Heidelberger, B.; Teschner, M.; Gross, M.H.: Volumetric collision detection for derformable

objects. CS technical report, 395, 2003. http://doi.org/10.3929/ethz-a-006665865.
[19] Jacobson, A.; Panozzo, D.; Schüller, C.; Diamanti, O.; Zhou, Q.; Pietroni, N.; et al.: libigl: A

simple c++ geometry processing library. Google Scholar, 2013.

[20] Jiménez, P.; Thomas, F.; Torras, C.: 3d collision detection: a survey. Computers & Graphics,
25(2), 269–285, 2001. http://doi.org/10.1016/S0097-8493(00)00130-8.

[21] Jones, M.W.; Baerentzen, J.A.; Sramek, M.: 3d distance fields: A survey of techniques and
applications. IEEE Transactions on visualization and Computer Graphics, 12(4), 581–599,
2006. http://doi.org/10.1109/TVCG.2006.56.

[22] Klosowski, J.T.; Held, M.; Mitchell, J.S.; Sowizral, H.; Zikan, K.: Efficient collision detection
using bounding volume hierarchies of k-dops. IEEE transactions on Visualization and

Computer Graphics, 4(1), 21–36, 1998. http://doi.org/10.1109/2945.675649.
[23] Kockara, S.; Halic, T.; Iqbal, K.; Bayrak, C.; Rowe, R.: Collision detection: A survey. In 2007

IEEE International Conference on Systems, Man and Cybernetics, 4046–4051. IEEE, 2007.
http://doi.org/10.1109/ICSMC.2007.4414258.

[24] Kornberger, B.: C++ constrained delaunay triangulation fade2d,
https://wwwgeomat/fade2d/html/indexhtml.

[25] Lauterbach, C.; Garland, M.; Sengupta, S.; Luebke, D.; Manocha, D.: Fast bvh construction

on gpus. In Computer Graphics Forum, vol. 28, 375–384. Wiley Online Library, 2009.
http://doi.org/10.1111/j.1467-8659.2009.01377.x.

[26] Möller, T.; Trumbore, B.: Fast, minimum storage ray-triangle intersection. j graph tools; 2
(1): 21–8, 1997. http://doi.org/10.1080/10867651.1997.10487468.

[27] Naylor, B.; Amanatides, J.; Thibault, W.: Merging bsp trees yields polyhedral set operations.
ACM Siggraph Computer Graphics, 24(4), 115–124, 1990.

http://doi.org/10.1145/97880.97892.
[28] Nef, W.: Beiträge zur theorie der polyeder: mit anwendungen in der computergraphik. (No

Title), 1978.
[29] Parker, S.G.; Bigler, J.; Dietrich, A.; Friedrich, H.; Hoberock, J.; Luebke, D.; McAllister, D.;

McGuire, M.; Morley, K.; Robison, A.; et al.: Optix: a general purpose ray tracing engine.
Acm transactions on graphics (tog), 29(4), 1–13, 2010.
http://doi.org/10.1145/1778765.1778803.

[30] Pavić, D.; Campen, M.; Kobbelt, L.: Hybrid booleans. In Computer Graphics Forum, vol. 29,
75–87. Wiley Online Library, 2010. http://doi.org/10.1111/j.1467-8659.2009.01545.x.

[31] Qin, Y.; Luo, Z.; Wen, L.; Feng, C.; Zhang, X.; Lan, M.; Liu, B.: Research and application of
boolean operation for triangular mesh model of underground space engineering-boolean
operation for triangular mesh model. Energy Science & Engineering, 7(4), 1154–1165, 2019.
http://doi.org/10.1002/ese3.335.

[32] Seers, T.: Fast mesh-mesh intersection using ray-tri intersection with octree spatial

partitioning.MathWorks File Exchange, 2015.

http://www.cad-journal.net/
http://doi.org/10.1016/j.cad.2012.11.004.
http://doi.org/10.1145/237170.237244.
http://doi.org/10.1109/RT.2007.4342598.
http://doi.org/10.1016/j.comgeo.2006.11.009.
http://doi.org/10.3929/ethz-a-006665865.
http://doi.org/10.1016/S0097-8493(00)00130-8.
http://doi.org/10.1109/TVCG.2006.56.
http://doi.org/10.1109/2945.675649.
http://doi.org/10.1109/ICSMC.2007.4414258.
https://wwwgeomat/fade2d/html/indexhtml
http://doi.org/10.1111/j.1467-8659.2009.01377.x.
http://doi.org/10.1080/10867651.1997.10487468.
http://doi.org/10.1145/97880.97892.
http://doi.org/10.1145/1778765.1778803.
http://doi.org/10.1111/j.1467-8659.2009.01545.x.
http://doi.org/10.1002/ese3.335.

Computer-Aided Design & Applications, 22(6), 2025, 1007-1026

© 2025 U-turn Press LLC, http://www.cad-journal.net

1026

[33] Sheng, B.; Li, P.; Fu, H.; Ma, L.; Wu, E.: Efficient non-incremental constructive solid
geometry evaluation for triangular meshes. Graphical Models, 97, 1–16, 2018.
http://doi.org/10.1016/j.gmod.2018.03.001.

[34] Sheng, B.; Liu, B.; Li, P.; Fu, H.; Ma, L.; Wu, E.: Accelerated robust boolean operations

based on hybrid representations. Computer Aided Geometric Design, 62, 133–153, 2018.
http://doi.org/10.1016/j.cagd.2018.03.021.

[35] Trettner, P.; Nehring-Wirxel, J.; Kobbelt, L.: Ember: exact mesh booleans via efficient &
robust local arrangements. ACM Transactions on Graphics (TOG), 41(4), 1–15, 2022.
http://doi.org/10.1145/3528223.3530181.

[36] Wang, C.C.: Approximate boolean operations on large polyhedral solids with partial mesh
reconstruction.IEEE transactions on visualization and computer graphics, 17(6), 836–849,

2010. http://doi.org/10.1109/TVCG.2010.106.

[37] Yongbin, J.; Liguan, W.; Lin, B.; Jianhong, C.: Boolean operations on polygonal meshes using
obb trees. In 2009 International Conference on Environmental Science and Information
Application Technology, vol. 1, 619–622. IEEE, 2009.
http://doi.org/10.1109/ESIAT.2009.128.

[38] Zhao, H.; Wang, C.C.; Chen, Y.; Jin, X.: Parallel and efficient Boolean on polygonal solids.

The Visual Computer, 27, 507–517, 2011. http://doi.org/10.1007/s00371-011-0571-1.
[39] Zhou, Q.; Grinspun, E.; Zorin, D.; Jacobson, A.: Mesh arrangements for solid geometry. ACM

Transactions on Graphics (TOG), 35(4), 1–15, 2016.
http://doi.org/10.1145/2897824.2925901.

[40] Zhou, Q.; Jacobson, A.: Thingi10k: A dataset of 10,000 3D-printing models. arXiv preprint
arXiv:1605.04797, 2016. http://doi.org/10.48550/arXiv.1605.04797.

http://www.cad-journal.net/
http://doi.org/10.1016/j.gmod.2018.03.001.
http://doi.org/10.1016/j.cagd.2018.03.021.
http://doi.org/10.1145/3528223.3530181.
http://doi.org/10.1109/TVCG.2010.106.
http://doi.org/10.1109/ESIAT.2009.128.
http://doi.org/10.1007/s00371-011-0571-1.
http://doi.org/10.1145/2897824.2925901.
http://doi.org/10.48550/arXiv.1605.04797.

