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Abstract. Significant progress has been made in mesh denoising techniques for recovering
high-quality models from three-dimensional meshes disturbed by noise in recent years. How-
ever, even state-of-the-art methods still struggle to handle various noisy 3D models stably.
The primary challenge of robust mesh denoising is to remove noise while preserving geomet-
ric features as much as possible. This paper proposes a novel robust and feature-preserving
mesh denoising method aimed at effectively eliminating noise while maintaining the sharp
features of the mesh. Initially, the normal directions are estimated using non-local similar
structures. Subsequently, the normal directions are filtered using orthogonal polynomial fit-
ting on line matrices. Finally, effective filtering and denoising of triangle meshes are achieved
by updating vertex positions. Experimental results demonstrate that our method produces
results comparable to or even higher quality than state-of-the-art techniques.

Keywords: Mesh Processing, Surface Denoising, Dimensional Accuracy, Process Optimiza-
tion
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INTRODUCTION

The triangular mesh surface model serves as a versatile representation method for three-dimensional objects,
playing a significant role in various aspects of computer-aided engineering, including reverse design, rapid
prototyping, 3D printing, and virtual simulation. Consequently, the reconstruction and processing of triangular
mesh surface models constitute a significant research focus within the field. A large amount of 3D grid data
in industry is obtained through 3D measurement, where the resulting grid model often incorporates noise
introduced during scanning and digitization. This noise can significantly impede the usability of the grid
model, necessitating its removal during the pre-processing stage.

Most early mesh smoothing methods could not preserve geometric features because they were isotropic
(i-e., independent of surface geometry). Taubin [18] proposed a non-shrinkage two-step smoothing method
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implemented through signal processing. Vollmer et al. [19]introduced a simple, fast Laplacian smoothing
algorithm. However, it results in surface contraction and cannot preserve sharp features. Researchers later de-
veloped various isotropic denoising methods based on volume preservation, frequency, or differential properties
[10, 8]. Due to the difficulty in preserving geometric features with isotropic methods, anisotropic denoising
methods gained widespread attention. Various methods based on diffusion or differential information have
been proposed, such as [13, 5] To address this issue, anisotropic methods have emerged. An early work
by Hildebrandt and Polthier [5] uses mean curvature flow to preserve features while denoising mesh shapes.
Subsequently, two-step methods, such as bilateral filtering techniques [4, 9] and others [17, 10, 11, 2], have
been proposed to better preserve features. These methods typically involve normal smoothing and vertex
updating, showing promising results for robust, feature-preserving mesh denoising. In recent years, researchers
have explored classification techniques for distinguishing features during mesh denoising [3, 1, 23, 20, 22].
However, these strategies often focus on local neighborhoods and are susceptible to noise. To mitigate this,
Lu et al. [11] introduced a pre-filtering technique before denoising to reduce the impact of excessive noise

Another approach in anisotropic mesh denoising focuses on a sparse perspective, where feature vertices are
computed by solving linear sparse systems. For instance, He and Schaefer [4] proposed an LO-minimisation
framework, which preserves mesh features but suffers from non-convex and slow minimization processes. To
address this, Zhao et al. [25] introduced an alternating optimization strategy for LO-minimisation. Similarly, Lu
et al. [11] presented an L1-minimisation method to preserve mesh features. Recently, Pan et al. [15] proposed
a half-kernel Laplacian operator, which reduces feature damages while removing noise by constructing a half
window of the local neighborhood for each vertex. Additionally, Wang et al. proposed a method using mesh
segmentation to preserve features.

In this paper, we adopt a method that first estimates the normal direction using non-local similar structures
[12] and then filters the normal direction using orthogonal polynomial fitting line matrices to achieve filtering
and denoising effects on the triangular mesh [14]. The matrix constructed with non-local homologous similar
structures has been proven to be more representative and robust. Additionally, orthogonal polynomials of
different orders do not interfere with each other, reducing both time costs and computational complexity
in the denoising process. Experiments have shown that our method can produce results comparable to or
of higher quality than state-of-the-art methods. The specific algorithm flow chart is shown in the following
Figure 1.

2 THE CONSTRUCTION OF NON-LOCAL SIMILAR STRUCTURES

To better understand the proposed non-local similar structures, we first briefly introduce local structures and
local co-oriented structures, and finally explain how non-local similar structures are obtained through screening.

2.1 The Tensor of Local Structure

Given a surface mesh M = (V, E, F') with N vertices, we have the set of vertices V, the set of edges E, and
the set of faces F'. The i-th vertex v; € V is represented by the coordinates v; = (z;,y;, z;) Each face f;.
has a local structure S;, which consists of the r -ring structure of f;. Due to the surface irregularities in the
noisy triangular mesh model, estimating the normal direction using a single face may not be accurate enough.
Therefore, we use the local structure to calculate a normal tensor, which replaces the initial normal direction.
The specific definition is as follows:

Tij = n(llei = ¢;1)¢(0:;)n] (1)

Where ¢; refers to the centroid of the current face f;, and n; refers to the normal of f;. n and ¢ are the
weights induced by spatial distances and intersection angles 6;; of two neighboring normals, which are given
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by [7] the specific definition is as follows:
n(a) = ¢ (%) (2)

(3)

op and oy are the parameters, Based on experiments, o), is set to twice the maximum distance between
two points in the set of faces of the r-ring neighborhood of f;. oy is set to be 30°.

For each local structure S;, we can derive the accumulated tensor by aggregating all the induced tensor
votes (4), i,j € S;. This final tensor encodes the local structure, which provides a reliable, representative
orientation.

1—cos(o0) )2

¢(9) — 67( T—cos(0)

T,=> Ty (4)
JES:

When obtaining the local principal components, we use the matrix decomposition technique to decompose
the T;(3*3) matrix. Consequently, three eigenvalues and their corresponding eigenvectors are obtained. We
select the eigenvector \;,, associated with the maximum eigenvalue V;,, as the principal direction of this local
structure. This is also referred to as the local tensor.

2.2 Local Isotropic Structure

After obtaining the representative direction V;,, for each local structure, we use Vg, as a reference to filter
out faces in the face set that are approximately aligned with this local direction. This approach eliminates
faces with large errors in the local structure, preparing for the next step of filtering out non-locally aligned
similar structures. The filtering criterion involves comparing the angle 6;;, between the normal of each face f;
in set S; and the direction V;4,. If the noise level in the model is high, the threshold angle 6,; is set larger;
otherwise, it is set smaller.

2.3 Non-local Similar Structures

Expanding the neighborhood range, searching for the R-ring neighborhood of face f; (with R>r), for each
face f; within the neighborhood, identifying its local co-aligned structure S%*°, comparing S°° with S}*°, and
determining the angle 6, between them. For cases with high noise, the angle threshold 6, is set to 40°.
while for cases with low noise, it is set t020°. Identifying all local co-aligned structures that meet the criteria
and adding them to S, ultimately obtaining the non-locally co-aligned similar structures for each face in
the model.

3 ORTHOGONAL POLYNOMIAL FITTING ESTIMATION FOR NORMAL

Orthogonal polynomials are distinguished by their property of orthogonality concerning a specific weight func-
tion, implying that their inner product is zero under this weight function. Orthogonal polynomial fitting thus
provides an effective approach to address the challenges associated with higher-order polynomial fitting.

3.1 The Definition of Orthogonal Polynomials

The definition of orthogonal polynomials:
A polynomial sequence p,(z) for n = 0,1,2,... with degree [p,(z)] = n is said to be orthogonal on the
open interval (a,b) with respect to the weight function w(z) if for each n, the following condition holds:
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Figure 1: A general overview of the algorithm
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b
/ (@) (2)pa(@) dz = b 5)

Where 6,,,,, is the Kronecker delta function, and h,, is a constant. Here, the weight function w(x) on the
interval (a,b) is assumed to be continuous and positive, such that the following integrals exist:

b
,un:/ w(r)z"dz, n=0,1,2,... (6)

The inner product of two polynomials f(z) and g(z) is defined as:

b
(fg) = / w() f(2)g(x) da @)

The interval (a,b) is called the orthogonal interval, which may or may not be finite.

3.2 Legendre Polynomials

Legendre polynomials are polynomials defined on the interval (—1, 1) that are orthogonal concerning the weight
function w(z) = 1. Legendre polynomials are a special case of Jacobi polynomials when o = 8 = 0. The
expression of Legendre polynomials is

1 dr

Pol®) = gat dom

[~ 1)) (®)
The recurrence formula for Legendre polynomials is:
(0 + 1) Py () = (2 + 1)aPa() — nPa1 () (9)

The specific expansion calculation of Legendre polynomials is as follows. The plot of the first six orders of
polynomials is shown in the following Figure 2.

po(r) =1

, o 1 rdx
p1(e) = 2 - gl s on(2) = o — I

o (Pew) (or@)
P2(2) = 2% — @ ?0(®) ~ i@y #1®) =7 — 3

1
3
_ .3 (13,900(1’)) (I37901(51?)) (51?3’@2(517)) _ .3 3
P3(2) = 2° — LimT e @ P0) ~ Grwe@) P1(®) T @ ey P2(@) = 27 — 52

1=z
(10)

For each non-local similar structure S7' for the isotropic structure S:°° associated with the face f;,
we append the face normals of SP* as rows to a matrix M. Note that the dimensions of this matrix are
r X 3. This matrix already has a maximal rank of 3 and is a low-rank matrix. To make the low-rank matrix
approximation meaningful, we reshape the matrix M to be close to a square matrix R. first, we need to
construct the orthogonal bases for the X and Y directions of matrix R. Assuming the fitting order in the
X-direction is a and in the Y-direction is b, the expressions for these two orthogonal bases can be represented
as:By = {¢o(z), p1(x), p2(2).....0a(x) }. By = {20(y), 1(y), p2(y)----0aly)}.

The expression of the fitting matrix is obtained by discretizing B, at uniform intervals within the range [-1,
1], resulting in a total of n nodes. From this discretization, the basis matrix B, (n x a) and its transpose matrix
BT'(a x n) are obtained. Similarly, the basis matrix in the Y direction B, (m x b) and its transpose matrix
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Figure 2: The first six Legendre polynomials

BJ'(b x m) are also obtained through m uniform intervals. Here, Z represents the matrix after orthogonal
polynomial filtering.

Zmxn :By(mxb) *Bg(mxb) *RmX”*Bﬂc(nxa) *BT (11)

z(axn)

When constructing similar structures for each face, adjacent faces form a set of similar structures S =
{f1, f2,- -, fn}, where overlapping regions may occur. In such cases, a weight is assigned to each face f; to
track its frequency of use. The final matrix is then obtained by accumulating contributions from each face,
which are divided by the corresponding weight coefficient. This process results in the updated normal direction
for each face.

4 POSITION UPDATE

After obtaining the updated normals corresponding to each triangle, we update the position of each vertex
in the triangle according to the new normals. We calculate the new position of the point using the following
formula:

S (- (ex —x0) (12)

kEFy (i)

Fy (i) refers to the set of torus adjacent to a triangle and refers to the center of the triangle where the current
point is located.

5 EXPERIMENTAL RESULTS AND ANALYSIS

In our experiments, we tested our method on numerous mesh models corrupted by synthesized or original
scan noise. Additionally, we evaluated several state-of-the-art mesh denoising methods on the same test set
for comparison. In this section, The proposed method is denoted as Method I. The selected state-of-the-art
mesh denoising methods include LO-minimisation (LO) [4], the Bilateral Normal Filter (BNF)[9], the Unilateral
Normal Filter (UNF)[17], the Guided Normal Filter (GNF) [24]. the L1-median Filter (L1) [11], the Half-kernel
Laplacian Operator (HLO) [15] and Segmentation-Driven Feature-Preserving(SNF) [21].
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The summary of parameters for the methods used in our comparative experiments is presented in Table
1. For all methods, we employ the recommended parameters and carefully adjust them to achieve the desired
outputs.

Our method varies in screening non-local similar structures based on the parameter cos 6, and the incre-
ment of o at each iteration according to different noise levels. For models with lower noise levels, we typically
set the initial cos 6y, within the range of 0.7 to 0.9, and the increment is generally set to 0.5. For models with
higher noise levels, we usually set the initial value within the range of 0.5 to 0.65, and the increment is set to
0.8 to 1.0. These parameter settings are close to the optimal solutions for our method. For n;s, and vjer,
we set them to 5 and 10, respectively.

5.1 Visual Results

Synthetic models. We compare our method with the selected state-of-the-art methods on various models
corrupted with synthetic noise. Following state-of-the-art mesh smoothing techniques, we generate synthetic
models by adding zero-mean Gaussian noise with standard deviation o,, to the corresponding ground truth.
oy, is proportional to the mean edge length [, of the input mesh.Figure 3 to Figure 6 depicts the experimental
results on synthetic models. Based on the data in Table 2, we can observe that our method outperforms other
methods for these models, or achieves comparable results to the best-performing method. Moreover, as shown
in the local details in Figure 5 and Figure 6, our method is effective in preserving local features.

Raw Scanned Models In addition to models corrupted by synthesized noise, we also tested all methods on
real 3D scanned data. Figure 7 and Figure 8 show that when all methods are applied to the original scan
of the angle model, although our method slightly lags behind the method of SNF, it still outperforms other
methods in denoising and preserving features. Additionally, we conducted a set of denoising experiments on
the same bunny scanned model with different levels of noise as Figure 9 It can be seen that for noise levels
of 0.1 and 0.3, our method performs quite well. However, when the noise level is too high, reaching 0.5, our
method has certain limitations. This issue is discussed in the conclusion.

5.2 Quantitative Evaluations

We compare the state-of-the-art techniques with our approach from a quantitative perspective. Specifically,
we employ E, and MSAE (mean square angular error) to respectively evaluate the positional error and normal
error, as suggested by previous works [17, 9, 16]. These two metrics are calculated between the smoothing
results and their corresponding ground truth.

According to [17, 6], E, is the L? vertex-based mesh-to-mesh error metric, and MSAE measures the mean
square angular error between the face normals of the denoised mesh and those of the ground truth.

1

E,= | ————+
3Zk~eF Ak

> Ajdist(x, T)?, (13)
i€V jEFy (i)

Where A}, is the area of face k, and dist(x;,T) is the L? distance between the updated vertex z; and a
triangle of the reference mesh T" which is closest to z;.

Zrer O
Np
Where 6y, is the angle between the k-th face normal of the denoised model and its corresponding normal

in the ground-truth model, and N is the number of faces in the 3D shape.

Table 2 summarizes the statistical numbers of E, and MSAE over most models for all the compared
methods.

MSAE = (14)
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Table 1: Parameters of the state-of-the-art mesh smoothing methods.

Methods Number of Parameters Description
Parameters

Lo 3 Bmazx: maximum value of beta
«0: initial value for alpha
A: weight for the LO term in the target function

BNF 3 os: Variance parameter for the spatial kernel
niter: Number of iterations for normal update
Uirer: Number of iterations for vertex update

UNF 3 T Threshold for controlling the averaging weights
niter: Number of iterations for normal update
Uiter: Number of iterations for vertex update

GNF 5 r: Radius for finding a geometrical neighborhood
o, Variance parameter for the spatial kernel
o, Variance parameter for the range kernel
niter: Number of iterations for normal update
Uirer: Number of iterations for vertex update

L1 3 o: variance parameter for the spatial kernel
niter: Number of iterations for normal update
Virer: Number of iterations for vertex update

HLO 1 iter: number of filtering iterations

SNF 1+X Dyp,-: edge-based segmentation threshold
X :the parameters of other methods

Ours 4 cos 0y,: Screening non-local similar structures

dd: The increment of o at each iteration
niter: Number of iterations for normal update

Uirer: Number of iterations for vertex update
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Table 2: Quantitative comparisons with representative mesh smoothing methods.

Models Methods |MSAE(x1072) | E,(x1073) | Parameters
LO 0.960 8.960 (1000,0.0033,0.01)
Cube BNF 0.889 4.758 (0.45,80,40)
Figure3 | UNF 0.135 1.229 (0.35,20,50)
(0 = 0.21.) | GNF 0.425 1.267 (2,1,0.35,20,10)
V] :12288 |L1 0.153 1.303 (80,40,45)
|F| :6146 |HLO 0.153 1.303 (3)
SNF(L1) |0.153 1.303 (80,40,45)
OURS  |0.075 1.224  |(0.7,0.05,6,20)
LO 5.2099 15.1554 (1000, 0.0027, 0.01)
Fandisk | BNF 12.182 8.536 (0.4,25,20)
Figure 4 | UNF 11.324 10437 [(0.3,30,20)
(0, = 0.41,) | GNF 10.739 6.976 (2,1,0.25,25,20)
V| 7220 [L1 20.817 8.147 (30,100,100)
|F| 14454 |HLO 8.545 18208 |(3)
SNF(UNF) |9.379 8.750 (0.3,30,20)
OURS  [10.349 5.983 (0.65,0.08,5,10)
LO 2.861 202.264 (1000,0.0013,1)
Cad BNF 2.973 207.254 |(0.35,25,20)
Figure 5 | UNF 3.654 239.814 | (0.55,20,40)
(0, = 0.31.) | GNF 3.624 252715 | (2,1,0.25,25,20)
V] :10308 |L1 3.408 186.496 | (80,40,45)
|F| :38792 |HLO 8.713 793.123 | (5)
SNF(BNF) | 2.529 181.763  |(0.35,25,20)
OURS 0.640 218.55 (0.75,0.05,5,10)
LO 17.043 6.138 (1000, 0.0021, 0.01)
Octaflower |BNF 5.938 2.520 (0.35,25,20)
Figure 6 | UNF 9.726 3.769 (0.55,20,40)
(0, = 0.11.) | GNF 8.6778 2.354 (2,1,0.25,25,20)
[V| :7919 L1 2.209 0.968 (20,10,30)
|F| 15834 |HLO 7.371 2.152 (3)
SNF(L1) |2.158 0.968 (20,10,30)
OURS  |3.74359 1.78147 | (0.85,0.05,5,10)

1035

Computer-Aided Design & Applications, 22(6), 2025, 1027-1039
© 2025 U-turn Press LLC, http://www.cad-journal.net


http://www.cad-journal.net

1036

|
B
f'
f

fEcuunuENn

Original  Noisy LO[4] BNF [9] UNF [17] GNF [10] L1 [11] HLO [15] SNF [21]  Ours

Figure 3: Coloured Ev for Cube with noise o,, = 0.2l
' ) - - _ : .
= | § S CF .—l = ' i | ey —| = J = —|

Original N0|sy LO[4] BNF [9] UNF [17] GNF [10] L1 [11] HLO [15] SNF [21]  Ours

Figure 4: Coloured Ev for fandisk with noise o,, = 0.4l

I WR730 711 4 W0 "I 4 &l W 1

i T M s T Wi S By
Original  Noisy ~ LO[4] BNF [9] UNF [17] GNF [10] L1 [11] HLO [15] SNF [21] Ours

Figure 5: Visual comparison for cad with noise o, = 0.3l

. - | - - - i
z - - r - L =
-

Original  Noisy LO[4] BNF [9] UNF [17] GNF [10] L1 [11] HLO [15] SNF [21]  Ours

Figure 6: Visual comparison for Octaflower with noise o, = 0.1l,

Noisy LO[4] BNF[9] UNF [17] GNF.[10] L1 [11] HLO-[15] SNF [21] Ours

Figure 7: Visual comparison for a raw scanned Angel mesh,

Computer-Aided Design & Applications, 22(6), 2025, 1027-1039
© 2025 U-turn Press LLC, http://www.cad-journal.net


http://www.cad-journal.net

1037

! - e L = = EEn i
- e - b -y . " .
i . 3 r L r 1 i
[ . i A i i i [/ _ [ [
& — L ¥ 1 i i | ' 1
| f 5 f 3 _ f X { X _ { | 8 - f % - f
' J L L L X i k |

Noisy ~ LO[4] BNF[9] UNF[17] GNF[10] L1[11] HLO [15] SNF[21]  Ours

Figure 8: Visual comparison for Nicolo with noise o, = 0.1/,

A < ) - T i g
i A r ¥ g R
. A L i i ol o
T’ 1 e R I. - T I
- | & = | R e.. : ; .II.. l|II - '-.I
Original o, = 0.1 o, = 0.3 o, = 0.5 Ours Ours Ours
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6 CONCLUSIONS

In this paper, the construction of non-local similar structures based on normal matrices is more representative
and robust. Orthogonal polynomials are easier to implement for preserving features in mesh denoising compared
to regular polynomials. Similar to other methods, our approach has limited robustness against excessive noise
and irregular triangulation. As for future work, we can consider fitting orthogonal polynomials separately to
the normals after partitioning the mesh. For instance, setting the mesh’s corner and edge parts as feature

parts and the rest as non-feature parts and applying thresholding separately to these segments. We hope that
through this method, we can design more robust algorithms.
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