

Computer-Aided Design & Applications, 22(6), 2025, 995-1006

© 2025 U-turn Press LLC, http://www.cad-journal.net

995

Graph Constructive Geometric Constraint Solving: Challenges and Machine

Learning

Ioannis Fudos1 and Vasiliki Stamati2

1University of Ioannina, fudos@uoi.gr
2University of Ioannina, vstamati@uoi.gr

Corresponding author: Ioannis Fudos, fudos@uoi.gr

Abstract. Computer-aided design (CAD) places significant emphasis on crafting
precise and durable models that seamlessly adhere to constraints set forth by
designers and/or specific application domains. Geometric constraint solving (GCS)

plays a pivotal role in ensuring the fulfillment of these criteria. This paper delves into
the contemporary research problems encountered within traditional GCS
methodologies, particularly when combining graph algorithms (termed graph

constructive GCS) and machine learning. Specifically, it investigates challenges about
well-constrainedness in both 2D and 3D GCS scenarios. Furthermore, it proposes and
scrutinizes an AI-assisted root navigation approach for graph-based constructive
constraint-solving problems.

Keywords: Geometric constraint solving, CAD, root navigation, animation, robotics,
rigidity, machine learning

DOI: https://doi.org/10.14733/cadaps.2025.995-1006

1 INTRODUCTION

Computer-aided design (CAD) has played a crucial role in various engineering applications such as
modeling, analysis, optimization, manufacturing, and maintenance. The concept of CAD dates back

to the 1960s, but it was the introduction of parametric CAD modelers in the late 1980s that led to
widespread recognition within the user and engineering community.

Parametric CAD allows for geometry reuse, enabling users to create a family of geometry
variants by adjusting embedded parameters in the model. Parametric modeling software is used in
various industries such as industrial machinery, consumer products, automotive and aerospace, and
healthcare. It helps in creating detailed 3D models, optimizing designs, simulating operations, and
generating manufacturing-ready designs. The associativity of parametric CAD techniques allows for

automatic change propagation when local parametric changes are made, achieved through a system
of geometric constraints and constraint solving.

http://www.cad-journal.net/
mailto:fudos@uoi.gr
mailto:vstamati@uoi.gr
mailto:fudos@uoi.gr
https://orcid.org/0000-0002-4137-0986
https://orcid.org/0000-0002-4225-3685

Computer-Aided Design & Applications, 22(6), 2025, 995-1006

© 2025 U-turn Press LLC, http://www.cad-journal.net

996

Feature-based computer-aided design (CAD) is a design methodology that uses predefined
shapes or features to create complex 3D models. These features can be simple shapes like lines,
arcs, and circles or more complex shapes like extrusions, chamfers, and fillets. Feature-based CAD
allows designers to create models more quickly and easily than with traditional CAD methods, which

require users to manually draw each line and shape. Features can be easily modified and updated,
making it easier to make changes to a design. Feature-based CAD is also more parametric than
traditional CAD, meaning that the model can be easily updated if the underlying parameters are
changed. However, since feature-based CAD involves design parts arbitrarily interconnected through
various geometric constraints it needs to be supported by a powerful, robust, and efficient geometric
constraint-solving engine. Overall, feature-based CAD is a powerful tool that can help designers
create complex 3D models quickly and easily.

Geometric constraint solving (GCS) in Computer-Aided Design ensures that the elements of a

design maintain their intended relationships and properties, thereby facilitating the creation of
accurate, precise, and consistent parts. Additionally, GCS enables the automation of design
modifications, leading to a more efficient use of time and resources. Moreover, geometric constraints
help enforce standardization in design practices, ensuring that designs adhere to specific rules and
guidelines.

Geometric constraint solving involves the use of a geometric constraint system consisting of
geometric entities and constraints. The process of solving systems of geometric constraints involves
translating constraints into algebraic equations and finding valid instantiations of geometric entities
that satisfy all the constraints. Challenges in GCS include characterizing constraint states, detecting
ill-constrained parts, and decomposing geometric constraint systems into smaller subsystems for
efficient solving. Research efforts have focused on developing effective criteria for detection and
decomposition algorithms for general constraint systems. Various techniques have been employed

for GCS, including rule-based constraint solving, nonlinear optimization using homotopy, analysis of
the graph of geometric relationships, and constructive constraint solving.

In this paper, we explore graph constructive constraint solving by identifying the major
challenges and suggesting plausible research directions that leverage machine learning and
theoretical breakthroughs.

More specifically, we investigate the use of graph neural networks to encode a geometric
constraint solving problem as a matter of relationships among elementary rigid bodies. Each node

in the graph represents a rigid body, and methods are developed to detect whether a node belongs
in a minimal constructible rigid body cluster. This approach provides a sequence of rigid body
placements that will derive a solution for the GCS problem, making it explainable, user-intuitive,
and aligned with design intent. Additionally, we address the root selection or root navigation problem
by employing a neural network to select the appropriate root (solution) for an elementary
construction, trained on examples drawn from standard design libraries.

We will also delve into the theoretical foundations for GCS and attempt to provide novel,
sufficient, and necessary conditions for the well-constrainedness of 2D and 3D GCS problems.

The deep graph constructive GCS approach suggested may have applications in various fields
besides CAD, including kinematics analysis for robotics, determining the degrees of freedom in
animation sequences, molecular biology for determining feasible placements of molecules in 3D, and
other applications that involve geometric constraints in both 2D and 3D spaces.

2 STATE OF THE ART

Numerical methods offer powerful tools for iteratively solving large systems of equations. Typically,
ensuring convergence requires providing a reasonably accurate initial approximation of the desired
solution. Therefore, if the initial point is derived from the user-defined sketch, it should closely align
with the intended solution. The widely adopted Newton-Raphson stands out as a local method used
in solvers described by various sources (see, e.g., [10]). Homotopy or continuation [5], [14], [16]

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 995-1006

© 2025 U-turn Press LLC, http://www.cad-journal.net

997

represents a family of global methods that can determine all solutions but exhibit lower efficiency
compared to local methods.

Symbolic algebraic techniques calculate a Grobner basis for a given system of equations with
notable algorithms (see, e.g. [19]). Analytical methods focusing on system structures assess whether

a system is under-constrained, well-constrained, or over-constrained. These approaches can be
extended to decompose systems into minimal graphs, solvable independently [18], serving as a pre-
processing step to reduce the variables and equations to be solved simultaneously. These methods
can be applied to almost any system of equations but are slow (sometimes require exponential time
on the number of equations), cannot capture over and under-constrained systems, and do not
provide an intuitive placement of geometric elements according to geometric constraints since they
do not exploit the geometric features of the problem.

In logic-based approaches (aka rule-based), the problem undergoes translation into a set of

assertions and axioms that characterize both the constraints and the geometric objects. Researchers
(see e.g. [4]) employ first-order logic to extract geometric information using a set of axioms derived
from Hilbert's geometry. These methods essentially generate geometric loci representing the
locations where the elements must be positioned. [13] extend these sets of constraints. These
methods are nice for prototyping and testing new repertoires of constraints, geometries, and rules

but cannot be used in real-world systems since they use exhaustive matching techniques. However,
recent advances in machine learning for geometric algebra may have interesting implications (see
e.g. [3]).

The constructive approach entails deriving solutions to geometric constraint problems through a
sequence of elementary construction steps. Each step follows rules from a predetermined set of
operations, positioning specific geometric elements. This method effectively preserves the inherent
geometric meaning of each operation in the solution. Depending on the analytical technique applied,

constructive approaches can be categorized as either top-down or bottom-up (see [12] for an
overview). [8],[9] use clusters as rigid body sets of geometries and constraints, employing a rule

that merges three clusters that, pairwise, share one element. This approach provides a unified
approach to treat geometric constraint systems as rigid bodies where constraints are reduced to
incidence constraints (rigid bodies that share a geometry). While this line of work provides a fast and
intuitive approach to the GCS problem three major issues should be addressed [1], [12]: (i) extend
the repertoire of rigid body patterns that can be merged/placed and (ii) extend the repertoire of

elementary geometric object to include higher dimension geometry (e.g. circle with variable radius)
(iii) extend the algorithm to 3D.

Degrees of Freedom (dof) Analysis involves assigning degrees of freedom to geometric elements
by labeling the vertices of the constraint graph. Each graph edge is tagged with the number of
degrees of freedom eliminated by the associated constraint. The method then resolves the problem
by examining the resulting labeled graph. [8] uses reduction systems to detect triangle

decomposable well-constrained systems. [14] breaks down the labeled graph into minimal connected
components called balanced sets. [11] presents a flow-based method for decomposing graphs of

geometric constraint problems. The method iterates to decompose the underlying algebraic system
into minimally dense subgraphs. While this method fully generalizes degree-of-freedom calculations
and prior flow-based approaches, the resulting decomposition may lack geometric sense, as minimal
dense subgraphs can exhibit arbitrary complexity beyond classical geometric construction problems.
In 2D, the Laman theorem provides a sufficient and necessary condition for characterizing the well-

contrainedness of a GCS if the geometries have two degrees of freedom and the geometric
constraints reserve one degree of freedom. If we include geometries with three degrees of freedom
the Laman condition is not sufficient anymore. A necessary and sufficient condition for rigidity in 3D
has been presented in [15] for an extended set of geometries and constraints. Note that this
characterization does not capture the cases explained in Figures 4 and 5. The condition holds for
both cases, but rigidity is not guaranteed since they involve point coincidences between rigid bodies
directly or indirectly. Leveraging a similar analysis on the system of equations that describe a GCS

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 995-1006

© 2025 U-turn Press LLC, http://www.cad-journal.net

998

[7],[17] has presented the witness configuration method, which also has many limitations [20] and
cannot be applied to solve large GCS problems.

Overall, while the geometric constraint-solving problem has been extensively addressed from
various perspectives, each approach has its limitations and strengths. For instance, numerical

methods can solve large nonlinear systems but are highly dependent on the initial approximation.
Logic-based methods consider geometric properties and are efficient for small-scale problems, but
their real-world applicability is limited. Constructive approaches more effectively exploit geometric
features, capture design intent, and hold potential for further research. With this in mind, we delve
into the realm of graph-constructive GCS and explore the prospective benefits of integrating AI
methodologies.

3 CHALLENGES AND RESEARCH DIRECTIONS

Considering the benefits of GCS and the above analysis of methods developed and applied in this

field, the following major challenges can be identified both generally in CAD and graphics and, more

specifically, in reference to GCS.

(C1) Making CAD and animation tools easier to use and more productive involves improving
the user interface, streamlining workflows, and enhancing the functionality of the
software. This could include features such as intuitive controls, real-time feedback, and
simplified processes for creating and editing designs or animations. The goal is to make
the tools more accessible and efficient for users, ultimately increasing their productivity.

(C2) Advancing theoretical foundations for geometric constraint solving entails further

developing the mathematical principles and algorithms that underpin the process of

solving geometric constraints. This could involve research into new mathematical models,
optimization techniques, and computational methods to improve the accuracy, efficiency,
and robustness of geometric constraint solving.

(C3) Building powerful and explainable geometric constraint-solving engines involves creating
software systems that are capable of accurately and reliably solving complex geometric
constraints while providing clear explanations for their solutions. This could include
developing algorithms that can handle a wide range of geometric scenarios, providing
detailed reasoning for each step of the solving process, and ensuring transparency in the
decision-making of the solving engine.

We propose the following directions of research on graph constructive GCS and explain how they
affect the above challenges:

(O1) Enhance the theoretical foundations by (i) comprehensively understanding the structural

properties that ensure well-constrainedness (addressing challenges C2 and C1), and (ii)
proposing methods for effectively solving consistently over and under-constrained

systems (addressing challenge C3).

(O2) Develop an efficient and versatile technique for deriving a construction sequence for
placing geometric elements that satisfy the imposed geometric constraints (addressing
challenge C1). The construction sequence should be easy to explain and align with design
intent (addressing challenge C3).

(O3) Introduce a user-friendly root selection process, enabling users, designers, and artists to
navigate through the solution space. The process will be powered by a deep learning

method that automatically recommends the most plausible root based on supervised
learning from examples drawn from CAD libraries (addressing challenges C1 and C3).

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 995-1006

© 2025 U-turn Press LLC, http://www.cad-journal.net

999

(O4) Utilize advanced deep graph constructive GCS techniques for (i) editing parametric and

feature-based CAD models, (ii) generating novel feature-based CAD models quickly and
with minimal user intervention, (iii) constraining and animating articulated characters,

and (iv) animating machine parts and robotic setups by deriving the degrees of freedom
of the geometric elements (all addressing challenge C1).

4 MACHINE LEARNING FOR GRAPH CONSTRUCTIVE GCS

Definition 1: Let P be a geometric constraint system P = (U, F) where U are the geometric elements
and F are the constraints imposed on them. The constraint graph G = (V, E) of P is a labeled
undirected graph whose vertices are the geometric objects in U, each labeled with its degrees of

freedom. There is an edge (u, v) in E if there is a constraint between the geometric objects ui and

vi, corresponding to u and v, respectively. The edge is labeled by the number of independent
equations corresponding to the constraint between ui and vi.

Below, we will omit the edge labels when they represent one degree of freedom and the labels
of the vertices when they are 2 in 2D and 3 in 3D. Every geometric element has a certain number of
degrees of freedom. For example, a line in 3D has four degrees of freedom. Each constraint reserves
one or more degrees of freedom. For example, in 3D, a coincidence constraint “point on line” reserves

one degree of freedom, whereas a coincidence constraint “point on point” reserves three degrees of
freedom. The deficit of a constraint graph is the sum of degrees of freedom minus the reserved by
constraints degrees of freedom.

Tables 1 and 2 are adopted from [12] and show the dof of the elementary geometric objects and
the dof that are consumed by several types of geometric constraints. For geometric constraints, each
simple (non-vector) equation is considered to cancel exactly one degree of freedom.

Geom Geometric Meaning of dof 2D 3D

Point Variables representing coordinates 2 3

Line 2D: distance from origin and direction
3D: distance from origin, direction in 3D

direction on the plane

2 4

Plane Distance from origin, direction in 3D 3

Circle, fixed-radius Coordinates of center, orientation in 3D 2 5

Circle, variable-radius Coordinates of center, radius,
orientation in 3D

3 6

Rigid body 2D: 2 displacements, 1 orientation
3D: 3 displacements, 3 orientation

3 6

Sphere, fixed- or
variable-radius

3 displacements or
3 displacements, radius

3 4

Ellipse, variable axes center, axis lengths, axis orientation 5 7

Ellipsoid, variable axes center, axis lengths, axis orientation 9

Table 1: Degrees of freedom for elementary objects and rigid objects.

Type Constraint 2D 3D

point-point distance One equation representing the distance be-
tween two points p1, p2 under the metric
|| ||: ||p1 − p2|| = d with d > 0.

1 1

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 995-1006

© 2025 U-turn Press LLC, http://www.cad-journal.net

1000

Angle between lines
and planes

Angle between two lines (can be represented by
the angle between the normal vectors).
Exceptions in 3D: Parallelism between

lines eliminates 2 dof. Line-plane orthogonality
in eliminates 2 dof.

1 1

Point on point For any metric ||p1 − p2|| = 0 is equivalent
to p1 = p2.

2 3

Point-line distance One equation expresses the point-line distance. 1 1

Line-line parallel
distance

Parallelism and distance. 2 3

Plane-plane parallel

distance

Parallelism and distance. 2 3

Point on line Same as point-line distance In 3D dimension is
reduced.

1 2

Line on line Same as parallel distance between lines in

2D. In 3D an additional dof is canceled.

2 4

Point on plane Same as point-plane distance. - 1

Line on plane Plane-line parallelism and zero distance. - 2

Fixing elementary
object

Fixing all or some of the dof of an elementary
object.

dof dof

Table 2: Types of constraints and number of dof eliminated.

Figure 3 shows a geometric constraint problem in 2D which cannot be solved by merely placing
objects sequentially. If we create the three rigid bodies as shown in the middle (from A, I we place
H, then from I and H we place G and so on) we will end up with the situation shown on the right.
There, we must place points A, D and G and then rotate and translate the three rigid bodies to fit on
the three points.

This implies that the geometric constraint system can be solved by successive reductions of well-
constrained rigid body configurations. Rigid bodies share geometric elements. Shared geometric

elements can be represented as coincidence constraints that eliminate the same number of degrees
of freedom as those of shared geometry. For example, each shared point in 2D eliminates two
degrees of freedom. This is a powerful and intuitive GCS method that can be applied in 2D or 3D.
Currently, there are certain limitations that we will attempt to overcome in this project.

A more complex example of a geometric constraint problem is presented in Figures 1 and 2. This

example involves two Bezier curves that are used for creating a fillet that blends the two sides of a

box when extruded or swept to 3D. The constraint problem is compiled into a problem with lines,
points, distances, angles, and constraints with 12 geometries (with 24 DOF) and 21 edges that each
consumes one of, deriving a rigid body in 2D with 3 DOF. This gives a well-constrained problem that
is sequentially constructible. Here is a construction sequence: 𝑃𝐴, 𝑃𝐵 are placed at distance 𝑑1, 𝑙4 is

constructed from 𝑃𝐴 and 𝑃𝐵, 𝑙3 is placed from 𝑃𝐵 and 𝑙4, 𝑙2 is constructed from 𝑃𝐴 and 𝑙4, 𝑃1 from 𝑙2

and 𝑃𝐴, 𝑙5 from 𝑃1 and 𝑙2, 𝑃5 form 𝑙5 and 𝑙3, 𝑃4 from 𝑃5 and 𝑙3, 𝑃2 from 𝑃1 and 𝑙2, 𝑙1 from 𝑃2 and 𝑃4, and

finally, 𝑃3 is constructed from 𝑙1 and 𝑃2.

4.1 Theoretical Foundations: Extending Laman’s Theorem

Laman’s theorem determines whether a geometric constraint problem is well constrained, meaning
that the problem has a finite number of solution instances for non-degenerate configurations.

Laman theorem: Let G = (V, E) be a connected, undirected graph whose vertices represent points in
2D and edges represent distances between points. G is a well-constrained constraint graph of a

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 995-1006

© 2025 U-turn Press LLC, http://www.cad-journal.net

1001

geometric constraint problem iff, the deficit of G is 3, and, for every subset U ⊂ V, the induced

subgraph (U, F) has a deficit of no less than 3.

Figure 1: A geometric constraint problem (left) illustrating the profile of a box with two blending
Bezier surfaces. For the 2D profile, we have two conic Bezier curves. The 2D problem translates to
the constraint graph in the (right) with 12 elementary geometric objects in 2D and 21 constraints.

Figure 2: 3D objects that result from different constraint values of the profile of Figure 1. In all
configurations d1= 20 cm and d2 = 20 cm

Figure 3: (Left) a GCS problem (A through I are points in 2D and edges represent distances), the
constraint graph is the same undirected graph. (Middle) three plausible construction sequences for
placing the three groups of points, every group of points represents a rigid body. (Right) Three rigid
bodies share a point pairwise.

Laman’s theorem holds even if we extend the repertoire of geometries to any geometry having 2
degrees of freedom and the constraints to virtually any constraint. However, if we extend the set of

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 995-1006

© 2025 U-turn Press LLC, http://www.cad-journal.net

1002

geometries to include, for example, variable radius circles (which acquire 3 degrees of freedom),
then the Laman condition is no longer sufficient.

Figure 4 depicts a Laman graph in 2D that is not rigid. 𝑉1 is a variable radius circle. 𝑉2, 𝑉3, 𝑉2
′, 𝑉3

′

are points. 𝑉4, 𝑉4
′ are lines. 𝑒1, 𝑒2, 𝑒1

′ , 𝑒2
′ are point-to-circle distances (distances from the center of the

circle). 𝑒3, 𝑒4, 𝑒3
′ , 𝑒4

′ are on constraints. 𝑒5, 𝑒5
′ are distances. 𝑒6, 𝑒6

′ are distances from the circle

(circumference).

Figure 4: A constraint graph in 2D. It consists of two rigid bodies that share a 3 dof geometry.
Although the Laman condition is valid, the graph is not well-constrained.

Graph analysis for spatial constraint problems is not nearly as mature as the planar case. In 3D, the
Laman condition is not sufficient. Figure 5 illustrates two hexahedra sharing two vertices. If the
length of the edges is given the GCS that arises is also known as the double banana problem. The

graph is a Laman graph but the problem corresponds to two rigid bodies (each hexahedron is a rigid

body) sharing two vertices and is thus non rigid in the sense that the two rigid bodies are free to
rotate around the axis defined by the two shared points. The problem is also clearly overconstrained
since the distance of the two shared geometries can be derived independently by each of the two
rigid bodies.

Figure 5: A constraint graph in 3D. Also known as the double banana problem, since it reduces to
two rigid bodies that share two points. Although the Laman condition is valid, the graph is not well-
constrained.

Therefore, we propose the following conjecture that extends Laman’s theorem:

Conjecture 1: A geometric constraint problem is well constrained iff the reduction sequence does not
derive two rigid bodies that share geometries with a total degree of freedom equal to the degree of

freedom of a rigid body in the corresponding space (6 for 3D, 3 for 2D).

If such rigid bodies (that share pairwise 3 in 2D or 6 in 3D dof) appear we can safely conclude
that the problem is not well constrained. It remains to determine whether the reverse holds. We shall
study the correctness of Conjecture 1 and provide an efficient algorithm using deep graph reduction
to determine the well-constrainedness of a geometric constraint scheme.

Extending the repertoire of reductions: Deep graph reduction

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 995-1006

© 2025 U-turn Press LLC, http://www.cad-journal.net

1003

The simplest reduction is the triangle reduction (see Figure 3 (right)) which has been studied
extensively. Figure 6 (left) illustrates two more minimal cases of well-constrained configurations of
graph constraint problems.

Figure 6: (Left) A minimal well-constrained configuration that consists of five rigid bodies in 2D and
contains no triangles. (Middle) A constraint problem in 2D: Derive the geometry of a triangle given
its three altitudes and (right) the corresponding constraint graph that contains no triangle (each

edge is a rigid body

We propose to systematically generate all such cases of minimal, well-constrained rigid body graphs
along with the placement of geometries. Then, one can introduce machine learning approaches for
detecting minimal well-constrained rigid body graphs based on graph density with minCutPool layers

with spectral clustering in graph neural networks [2] (unsupervised learning) or for detecting certain
graph patterns with neighborhood kernels in GNNs [6] (supervised learning).

To increase the scope of our approach, we may (i) include composite geometric objects by
transforming the composite object to a set of direct and indirect constraints and elementary
geometries and (ii) extend the repertoire of elementary geometries (e.g., circle of variable radii).

4.2 The Root Selection Problem: AI-assisted Root Navigation

A well-constrained geometric constraint system for which we have derived a construction sequence

based on graph analysis with 𝑚 construction steps and an average of 𝑘 discrete per construction

steps will have 𝑂(𝑘𝑚) discrete solutions. Fig. 7 illustrates a geometric constraint problem with three

discrete real solutions (up to rotation and translation). Even the more generic problem of computing

a real solution for a solvable, well-constrained problem was shown to be NP-hard in a strong
combinatorial sense [9].

We propose developing a user-friendly and powerful tool for the root navigation problem

employing deep learning. We will use a hybrid GNN-LSTM with attention architecture to choose the
appropriate solution based on the construction sequence. There will be a training phase with
hundreds of construction sequences from design libraries.

We have experimented with an encoder-decoder LSTM scheme with attention that is capable of
capturing a geometric sequence and providing the final placement for all geometric elements. The
network is shown in Figure 9. It receives as input the geometric construction sequence (the steps of
placing the geometric elements with respect to each other) and the initial geometry placement.
Usually, the initial geometry placement represents the geometric elements as determined implicitly
by the designer when creating the (incorrect) draft configuration before enforcing the imposed
geometric constraints. We have trained the network with 40 different geometric sequences with

several constraint value configurations and initial geometry placements.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 995-1006

© 2025 U-turn Press LLC, http://www.cad-journal.net

1004

Figure 7: (a) A geometric constraint problem consisting of four points, four straight segments, four

point- point distances, and an angle. (b) and (d) Two different solution instances to the constraint
problem (a). By changing the value of 𝑑3 one may also get solution (c) which yields a non-intersecting

non-convex closed polyline. In most cases (b) captures design intent since it is the only non-
intersecting convex closed polyline.

For the construction steps we have used a small set of constructions that corresponds to placing a

line or point in 2D from two point/line geometries (5 different construction steps, we cannot place a
line in 2D from two other lines since one angle is redundant). We have observed the following:

(i) The network generalizes well to sequences with the same number of construction steps.
(ii) As we increase the training set, the accuracy of the final placement increases. Probably this

is because the network learns how to perform each type of placement correctly.
(iii) The network learns to maintain convexity, thus avoiding the case of Figure 7 (c)

(iv) The networks learn to enforce the non-self-intersectingness of closed polylines, thus

avoiding the case of Figure 7 (d), which derives a non-manifold object when used as a
profile path for extrusion in Figure 8 (right).

(v) Since we provide only symbolic information in the geometric construction sequence, we
may use this scheme for a multitude of placement steps, including non-trivial 2D and 3D
configurations that require numerical constraint-solving techniques.

Figure 8: Two solutions for extrusion of the profile of Fig. 7. (left) The solution that corresponds to
the profile of Fig. 7(b) and (right) the solution that corresponds to the profile of Fig. 7(c).

5 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Geometric Constraint Solving (GCS) undeniably plays a crucial role in Computer-Aided Design (CAD)
by ensuring the generation of accurate, precise, and consistent parts. This paper proposes addressing
research challenges by integrating traditional GCS methods with graph theory and machine learning

approaches. The paper specifically focuses on tackling the well-constrainedness issues in 2D and 3D

http://www.cad-journal.net/

Computer-Aided Design & Applications, 22(6), 2025, 995-1006

© 2025 U-turn Press LLC, http://www.cad-journal.net

1005

GCS problems, grounded in the theoretical foundations of GCS. Additionally, the matter of AI-assisted
root selection for graph-based constructive constraint solving is explored.

Figure 9: The network architecture for learning to perform geometric construction sequences.

One can employ GCS for placing geometric objects in CAD models. We will investigate cases with (i)

simple geometries (points, lines, planes, conics, spheres), (ii) composite parts, and (iii) surface and
curve patches.

We also suggest investigating encodings of graph construction sequences for generating novel,
meaningful construction sequences (for CAD).

Ioannis Fudos, https://orcid.org/0000-0002-4137-0986
Vasiliki Stamati, https://orcid.org/0000-0002-4225-3685

REFERENCES

[1] Ait-Aoudia, S.; Moussaoui, S.; Abid, K.; Michelucci, D.: On the reducibility of geometric
constraint graphs, (2017), arXiv CoRR abs/1712.05578.

http://www.cad-journal.net/
https://orcid.org/0000-0002-4137-0986
https://orcid.org/0000-0002-4225-3685

Computer-Aided Design & Applications, 22(6), 2025, 995-1006

© 2025 U-turn Press LLC, http://www.cad-journal.net

1006

[2] Bianchi, F.; Grattarola, D.; Alippi, C.: Spectral Clustering with Graph Neural Networks for Graph
Pooling, Proceedings of the 37th international conference on Machine learning, 2729-2738,
ACM 2020.

[3] Brehmer, J.; de Haan, P.; Behrends, S.; Cohen, T.: Geometric Algebra Transformer, Advances

in Neural Information Processing Systems, 2023, vol. 37, https://arxiv.org/abs/2305.18415.
[4] Brüderlin, B.: Using geometric rewrite rules for solving geometric problems symbolically, In

Theoretical Computer Science 116, 1993, pages 291–303. Elsevier Science Publishers B.V.
[5] Durand, C.; Hoffmann, C.M.: A Systematic Framework for Solving Geometric Constraints

Analytically, Journal of Symbolic Computation, Volume 30, Issue 5, 2000, Pages 493-519,
https://doi.org/10.1006/jsco.2000.0392.

[6] Feng, A.; You, C.; Wang, S.; Tassiulas, L.: KerGNNs: Interpretable Graph Neural Networks

with Graph Kernels, Proceedings of the AAAI Conference on Artificial Intelligence 36(6), 2022,

6614–6622, https://doi.org/10.1609/aaai.v36i6.20615.
[7] Foufou, S.; Michelucci, D.: Interrogating witnesses for geometric constraint solving,

Information and Computation, 216, 2012, 24–38, https://doi.org/10.1016/j.ic.2011.09.006.
[8] Fudos, I.; Hoffmann, C.M.: Correctness proof of a geometric constraint solver, Intl J

Computational Geometry and Applications, 6(4), 1996, 405-420,

https://doi.org/10.1142/S0218195996000253.
[9] Fudos, I.; Hoffmann, C.M.: A graph-constructive approach to solving systems of geometric

constraints, ACM Trans. On Graphics, 16, 1997, 179-216,
https://doi.org/10.1145/248210.248223.

[10] Heydon, A.; Nelson, G.: The Juno-2 Constraint-Based Drawing Editor, Research Report 131a,
Digital Systems Research Center, December 1994.

[11] Hoffman, C.M.; Lomonosov, A.; Sitharam, M.: Decomposition Plans for Geometric Constraint

Systems, Part I: Performance Measures for CAD, J Symb Comput, 31, 2001, 367–408,
https://doi.org/10.1006/jsco.2000.0402.

[12] Fudos, I.; Hoffmann, C.M.; Juan-Arinyo, R.: Tree-decomposable and Underconstrained
Geometric Constraint Problems, in: M. Sitharam, A. St. John, J. Sidman (Eds.), Handbook of
Geometric Constraint Systems Principles, 1st ed., Chapman and Hall/CRC, Chapter 6, 2017,
https://doi.org/10.1201/9781315121116.

[13] Joan-Arinyo, R.; Soto, A.: A correct rule-based geometric constraint solver, Comput Graph,

21(5), 1997, 599–609, https://doi.org/10.1016/S0097-8493(97)00038-1.
[14] Lamure, H.; Michelucci, D.: Solving geometric constraints by homotopy, in C. Hoffmann, J.

Rossignac (Eds.), 3rd Symposium on Solid Modeling and Applications, ACM Press, Salt Lake
City, Utah USA, 1995, pp. 263–269, https://doi.org/10.1145/218013.218071.

[15] Lee-St.john, A.; Sidman, J.: Combinatorics and the rigidity of CAD systems, Computer-Aided
Design, 45(2), 2013, 473–482, https://doi.org/10.1016/j.cad.2012.10.030.

[16] Li, X.; Ge, Q.J.; Gao, F.: A computational geometric approach for motion generation of spatial
linkages with sphere and plane constraints, J Mech Robot 11(1), 2019,

https://doi.org/10.1115/1.4041788.
[17] Michelucci, D.; Foufou, S.: Geometric constraint solving: The witness configuration method,

Computer-Aided Design, 38, 2006, 284–299, https://doi.org/10.1016/j.cad.2006.01.005.
[18] Sridhar, N.; Agrawal, R.; Kinzel, G.L.: Algorithms for the structural diagnosis and

decomposition of sparse, underconstrained design systems, Computer-Aided Design, 28,

1996, 237–249, https://doi.org/10.1016/0010-4485(96)88488-0.
[19] Wu, W.: Mechanical Theorem Proving in Geometries, in: B. Buchberger, G. E. Collins (Eds.),

Texts and Monographs in Symbolic Computations, Springer Vienna, Vienna, 1994,
https://doi.org/10.1007/978-3-7091-6639-0.

[20] Zou, Q.; Feng, H.-Y.: On Limitations of the Witness Configuration Method for Geometric
Constraint Solving in CAD Modeling, 2019, arXiv preprint arXiv:1904.00526.

http://www.cad-journal.net/
https://arxiv.org/abs/2305.18415
https://doi.org/10.1006/jsco.2000.0392
https://doi.org/10.1609/aaai.v36i6.20615
https://doi.org/10.1016/j.ic.2011.09.006
https://doi.org/10.1142/S0218195996000253
https://doi.org/10.1142/S0218195996000253
https://doi.org/10.1145/248210.248223
https://doi.org/10.1006/jsco.2000.0402
https://doi.org/10.1201/9781315121116.
https://doi.org/10.1016/S0097-8493(97)00038-1
https://doi.org/10.1145/218013.218071
https://doi.org/10.1016/j.cad.2012.10.030
https://doi.org/10.1115/1.4041788
https://doi.org/10.1016/j.cad.2006.01.005
https://doi.org/10.1016/0010-4485(96)88488-0
https://doi.org/10.1007/978-3-7091-6639-0

