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Abstract. Computer-aided design (CAD) places significant emphasis on crafting 
precise and durable models that seamlessly adhere to constraints set forth by 
designers and/or specific application domains. Geometric constraint solving (GCS) 

plays a pivotal role in ensuring the fulfillment of these criteria. This paper delves into 
the contemporary research problems encountered within traditional GCS 
methodologies, particularly when combining graph algorithms (termed graph 

constructive GCS) and machine learning. Specifically, it investigates challenges about 
well-constrainedness in both 2D and 3D GCS scenarios. Furthermore, it proposes and 
scrutinizes an AI-assisted root navigation approach for graph-based constructive 
constraint-solving problems. 
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1 INTRODUCTION 

 
Computer-aided design (CAD) has played a crucial role in various engineering applications such as 
modeling, analysis, optimization, manufacturing, and maintenance. The concept of CAD dates back 

to the 1960s, but it was the introduction of parametric CAD modelers in the late 1980s that led to 
widespread recognition within the user and engineering community.  

Parametric CAD allows for geometry reuse, enabling users to create a family of geometry 
variants by adjusting embedded parameters in the model. Parametric modeling software is used in 
various industries such as industrial machinery, consumer products, automotive and aerospace, and 
healthcare. It helps in creating detailed 3D models, optimizing designs, simulating operations, and 
generating manufacturing-ready designs. The associativity of parametric CAD techniques allows for 

automatic change propagation when local parametric changes are made, achieved through a system 
of geometric constraints and constraint solving. 
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Feature-based computer-aided design (CAD) is a design methodology that uses predefined 
shapes or features to create complex 3D models. These features can be simple shapes like lines, 
arcs, and circles or more complex shapes like extrusions, chamfers, and fillets. Feature-based CAD 
allows designers to create models more quickly and easily than with traditional CAD methods, which 

require users to manually draw each line and shape. Features can be easily modified and updated, 
making it easier to make changes to a design. Feature-based CAD is also more parametric than 
traditional CAD, meaning that the model can be easily updated if the underlying parameters are 
changed. However, since feature-based CAD involves design parts arbitrarily interconnected through 
various geometric constraints it needs to be supported by a powerful, robust, and efficient geometric 
constraint-solving engine. Overall, feature-based CAD is a powerful tool that can help designers 
create complex 3D models quickly and easily. 

Geometric constraint solving (GCS) in Computer-Aided Design ensures that the elements of a 

design maintain their intended relationships and properties, thereby facilitating the creation of 
accurate, precise, and consistent parts. Additionally, GCS enables the automation of design 
modifications, leading to a more efficient use of time and resources. Moreover, geometric constraints 
help enforce standardization in design practices, ensuring that designs adhere to specific rules and 
guidelines. 

Geometric constraint solving involves the use of a geometric constraint system consisting of 
geometric entities and constraints. The process of solving systems of geometric constraints involves 
translating constraints into algebraic equations and finding valid instantiations of geometric entities 
that satisfy all the constraints. Challenges in GCS include characterizing constraint states, detecting 
ill-constrained parts, and decomposing geometric constraint systems into smaller subsystems for 
efficient solving. Research efforts have focused on developing effective criteria for detection and 
decomposition algorithms for general constraint systems. Various techniques have been employed 

for GCS, including rule-based constraint solving, nonlinear optimization using homotopy, analysis of 
the graph of geometric relationships, and constructive constraint solving. 

In this paper, we explore graph constructive constraint solving by identifying the major 
challenges and suggesting plausible research directions that leverage machine learning and 
theoretical breakthroughs.  

More specifically, we investigate the use of graph neural networks to encode a geometric 
constraint solving problem as a matter of relationships among elementary rigid bodies. Each node 

in the graph represents a rigid body, and methods are developed to detect whether a node belongs 
in a minimal constructible rigid body cluster. This approach provides a sequence of rigid body 
placements that will derive a solution for the GCS problem, making it explainable, user-intuitive, 
and aligned with design intent. Additionally, we address the root selection or root navigation problem 
by employing a neural network to select the appropriate root (solution) for an elementary 
construction, trained on examples drawn from standard design libraries. 

We will also delve into the theoretical foundations for GCS and attempt to provide novel, 
sufficient, and necessary conditions for the well-constrainedness of 2D and 3D GCS problems. 

The deep graph constructive GCS approach suggested may have applications in various fields 
besides CAD, including kinematics analysis for robotics, determining the degrees of freedom in 
animation sequences, molecular biology for determining feasible placements of molecules in 3D, and 
other applications that involve geometric constraints in both 2D and 3D spaces. 

2 STATE OF THE ART 

Numerical methods offer powerful tools for iteratively solving large systems of equations. Typically, 
ensuring convergence requires providing a reasonably accurate initial approximation of the desired 
solution. Therefore, if the initial point is derived from the user-defined sketch, it should closely align 
with the intended solution. The widely adopted Newton-Raphson stands out as a local method used 
in solvers described by various sources (see, e.g., [10]). Homotopy or continuation [5], [14], [16] 
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represents a family of global methods that can determine all solutions but exhibit lower efficiency 
compared to local methods.  

Symbolic algebraic techniques calculate a Grobner basis for a given system of equations with 
notable algorithms (see, e.g. [19]). Analytical methods focusing on system structures assess whether 

a system is under-constrained, well-constrained, or over-constrained. These approaches can be 
extended to decompose systems into minimal graphs, solvable independently [18], serving as a pre-
processing step to reduce the variables and equations to be solved simultaneously. These methods 
can be applied to almost any system of equations but are slow (sometimes require exponential time 
on the number of equations), cannot capture over and under-constrained systems, and do not 
provide an intuitive placement of geometric elements according to geometric constraints since they 
do not exploit the geometric features of the problem. 

In logic-based approaches (aka rule-based), the problem undergoes translation into a set of 

assertions and axioms that characterize both the constraints and the geometric objects. Researchers 
(see e.g. [4]) employ first-order logic to extract geometric information using a set of axioms derived 
from Hilbert's geometry. These methods essentially generate geometric loci representing the 
locations where the elements must be positioned. [13] extend these sets of constraints. These 
methods are nice for prototyping and testing new repertoires of constraints, geometries, and rules 

but cannot be used in real-world systems since they use exhaustive matching techniques. However, 
recent advances in machine learning for geometric algebra may have interesting implications (see 
e.g. [3]). 

The constructive approach entails deriving solutions to geometric constraint problems through a 
sequence of elementary construction steps. Each step follows rules from a predetermined set of 
operations, positioning specific geometric elements. This method effectively preserves the inherent 
geometric meaning of each operation in the solution. Depending on the analytical technique applied, 

constructive approaches can be categorized as either top-down or bottom-up (see [12] for an 
overview). [8],[9] use clusters as rigid body sets of geometries and constraints, employing a rule 

that merges three clusters that, pairwise, share one element. This approach provides a unified 
approach to treat geometric constraint systems as rigid bodies where constraints are reduced to 
incidence constraints (rigid bodies that share a geometry). While this line of work provides a fast and 
intuitive approach to the GCS problem three major issues should be addressed [1], [12]: (i) extend 
the repertoire of rigid body patterns that can be merged/placed and (ii) extend the repertoire of 

elementary geometric object to include higher dimension geometry (e.g. circle with variable radius) 
(iii) extend the algorithm to 3D.  

Degrees of Freedom (dof) Analysis involves assigning degrees of freedom to geometric elements 
by labeling the vertices of the constraint graph. Each graph edge is tagged with the number of 
degrees of freedom eliminated by the associated constraint. The method then resolves the problem 
by examining the resulting labeled graph. [8] uses reduction systems to detect triangle 

decomposable well-constrained systems. [14] breaks down the labeled graph into minimal connected 
components called balanced sets. [11] presents a flow-based method for decomposing graphs of 

geometric constraint problems. The method iterates to decompose the underlying algebraic system 
into minimally dense subgraphs. While this method fully generalizes degree-of-freedom calculations 
and prior flow-based approaches, the resulting decomposition may lack geometric sense, as minimal 
dense subgraphs can exhibit arbitrary complexity beyond classical geometric construction problems. 
In 2D, the Laman theorem provides a sufficient and necessary condition for characterizing the well-

contrainedness of a GCS if the geometries have two degrees of freedom and the geometric 
constraints reserve one degree of freedom. If we include geometries with three degrees of freedom 
the Laman condition is not sufficient anymore.  A necessary and sufficient condition for rigidity in 3D 
has been presented in [15] for an extended set of geometries and constraints. Note that this 
characterization does not capture the cases explained in Figures 4 and 5. The condition holds for 
both cases, but rigidity is not guaranteed since they involve point coincidences between rigid bodies 
directly or indirectly. Leveraging a similar analysis on the system of equations that describe a GCS 
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[7],[17] has presented the witness configuration method, which also has many limitations [20] and 
cannot be applied to solve large GCS problems. 

Overall, while the geometric constraint-solving problem has been extensively addressed from 
various perspectives, each approach has its limitations and strengths. For instance, numerical 

methods can solve large nonlinear systems but are highly dependent on the initial approximation. 
Logic-based methods consider geometric properties and are efficient for small-scale problems, but 
their real-world applicability is limited. Constructive approaches more effectively exploit geometric 
features, capture design intent, and hold potential for further research. With this in mind, we delve 
into the realm of graph-constructive GCS and explore the prospective benefits of integrating AI 
methodologies. 

3 CHALLENGES AND RESEARCH DIRECTIONS 

Considering the benefits of GCS and the above analysis of methods developed and applied in this 

field, the following major challenges can be identified both generally in CAD and graphics and, more 

specifically, in reference to GCS.  

(C1) Making CAD and animation tools easier to use and more productive involves improving 
the user interface, streamlining workflows, and enhancing the functionality of the 
software. This could include features such as intuitive controls, real-time feedback, and 
simplified processes for creating and editing designs or animations. The goal is to make 
the tools more accessible and efficient for users, ultimately increasing their productivity. 

 
(C2) Advancing theoretical foundations for geometric constraint solving entails further 

developing the mathematical principles and algorithms that underpin the process of 

solving geometric constraints. This could involve research into new mathematical models, 
optimization techniques, and computational methods to improve the accuracy, efficiency, 
and robustness of geometric constraint solving. 
 

(C3) Building powerful and explainable geometric constraint-solving engines involves creating 
software systems that are capable of accurately and reliably solving complex geometric 
constraints while providing clear explanations for their solutions. This could include 
developing algorithms that can handle a wide range of geometric scenarios, providing 
detailed reasoning for each step of the solving process, and ensuring transparency in the 
decision-making of the solving engine. 

 

We propose the following directions of research on graph constructive GCS and explain how they 
affect the above challenges: 

 
(O1)  Enhance the theoretical foundations by (i) comprehensively understanding the structural 

properties that ensure well-constrainedness (addressing challenges C2 and C1), and (ii) 
proposing methods for effectively solving consistently over and under-constrained 

systems (addressing challenge C3). 
 

(O2)  Develop an efficient and versatile technique for deriving a construction sequence for 
placing geometric elements that satisfy the imposed geometric constraints (addressing 
challenge C1). The construction sequence should be easy to explain and align with design 
intent (addressing challenge C3). 
 

(O3)  Introduce a user-friendly root selection process, enabling users, designers, and artists to 
navigate through the solution space. The process will be powered by a deep learning 

method that automatically recommends the most plausible root based on supervised 
learning from examples drawn from CAD libraries (addressing challenges C1 and C3). 
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(O4)  Utilize advanced deep graph constructive GCS techniques for (i) editing parametric and 

feature-based CAD models, (ii) generating novel feature-based CAD models quickly and 
with minimal user intervention, (iii) constraining and animating articulated characters, 

and (iv) animating machine parts and robotic setups by deriving the degrees of freedom 
of the geometric elements (all addressing challenge C1). 

4 MACHINE LEARNING FOR GRAPH CONSTRUCTIVE GCS 

Definition 1: Let P be a geometric constraint system P = (U, F) where U are the geometric elements 
and F are the constraints imposed on them. The constraint graph G = (V, E) of P is a labeled 
undirected graph whose vertices are the geometric objects in U, each labeled with its degrees of 

freedom. There is an edge (u, v) in E if there is a constraint between the geometric objects ui and 

vi, corresponding to u and v, respectively. The edge is labeled by the number of independent 
equations corresponding to the constraint between ui and vi. 

Below, we will omit the edge labels when they represent one degree of freedom and the labels 
of the vertices when they are 2 in 2D and 3 in 3D. Every geometric element has a certain number of 
degrees of freedom. For example, a line in 3D has four degrees of freedom. Each constraint reserves 
one or more degrees of freedom. For example, in 3D, a coincidence constraint “point on line” reserves 

one degree of freedom, whereas a coincidence constraint “point on point” reserves three degrees of 
freedom. The deficit of a constraint graph is the sum of degrees of freedom minus the reserved by 
constraints degrees of freedom. 

Tables 1 and 2 are adopted from [12] and show the dof of the elementary geometric objects and 
the dof that are consumed by several types of geometric constraints. For geometric constraints, each 
simple (non-vector) equation is considered to cancel exactly one degree of freedom. 

 

Geom Geometric Meaning of dof 2D 3D 

Point Variables representing coordinates 2 3 

Line 2D: distance from origin and direction 
3D: distance from origin, direction in 3D 

direction on the plane 

2 4 

Plane Distance from origin, direction in 3D  3 

Circle, fixed-radius Coordinates of center, orientation in 3D 2 5 

Circle, variable-radius Coordinates of center, radius, 
orientation in 3D 

3 6 

Rigid body 2D: 2 displacements, 1 orientation 
3D: 3 displacements, 3 orientation 

3 6 

Sphere, fixed- or 
variable-radius 

3 displacements or 
3 displacements, radius 

3 4 

Ellipse, variable axes center, axis lengths, axis orientation 5 7 

Ellipsoid, variable axes center, axis lengths, axis orientation  9 

 

Table 1: Degrees of freedom for elementary objects and rigid objects. 
 

Type Constraint 2D 3D 

point-point distance One equation representing the distance be- 
tween two points p1, p2 under the metric 
|| ||: ||p1 − p2|| = d with d > 0. 

1 1 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 22(6), 2025, 995-1006 

© 2025 U-turn Press LLC, http://www.cad-journal.net 
 

1000 

Angle between lines  
and planes 

Angle between two lines (can be represented by  
the angle between the normal vectors). 
Exceptions in 3D: Parallelism between 

lines eliminates 2 dof. Line-plane orthogonality  
in eliminates 2 dof. 

1 1 

Point on point For any metric ||p1 − p2|| = 0 is equivalent 
to p1 = p2. 

2 3 

Point-line distance One equation expresses the point-line distance. 1 1 

Line-line parallel  
distance 

Parallelism and distance. 2 3 

Plane-plane parallel  

distance 

Parallelism and distance. 2 3 

Point on line Same as point-line distance In 3D dimension is  
reduced. 

1 2 

Line on line Same as parallel distance between lines in 

2D. In 3D an additional dof is canceled. 

2 4 

Point on plane Same as point-plane distance. - 1 

Line on plane Plane-line parallelism and zero distance. - 2 

Fixing elementary  
object 

Fixing all or some of the dof of an elementary  
object. 

dof dof 

 
Table 2: Types of constraints and number of dof eliminated. 

 

Figure 3 shows a geometric constraint problem in 2D which cannot be solved by merely placing 
objects sequentially. If we create the three rigid bodies as shown in the middle (from A, I we place 
H, then from I and H we place G and so on) we will end up with the situation shown on the right. 
There, we must place points A, D and G and then rotate and translate the three rigid bodies to fit on 
the three points. 

This implies that the geometric constraint system can be solved by successive reductions of well-
constrained rigid body configurations. Rigid bodies share geometric elements. Shared geometric 

elements can be represented as coincidence constraints that eliminate the same number of degrees 
of freedom as those of shared geometry. For example, each shared point in 2D eliminates two 
degrees of freedom. This is a powerful and intuitive GCS method that can be applied in 2D or 3D. 
Currently, there are certain limitations that we will attempt to overcome in this project.  

A more complex example of a geometric constraint problem is presented in Figures 1 and 2. This 

example involves two Bezier curves that are used for creating a fillet that blends the two sides of a 

box when extruded or swept to 3D. The constraint problem is compiled into a problem with lines, 
points, distances, angles, and constraints with 12 geometries (with 24 DOF) and 21 edges that each 
consumes one of, deriving a rigid body in 2D with 3 DOF. This gives a well-constrained problem that 
is sequentially constructible. Here is a construction sequence: 𝑃𝐴, 𝑃𝐵  are placed at distance 𝑑1, 𝑙4 is 

constructed from 𝑃𝐴 and 𝑃𝐵, 𝑙3 is placed from 𝑃𝐵 and 𝑙4, 𝑙2 is constructed from 𝑃𝐴 and 𝑙4, 𝑃1 from 𝑙2 

and 𝑃𝐴, 𝑙5 from 𝑃1 and 𝑙2, 𝑃5  form 𝑙5 and 𝑙3, 𝑃4 from 𝑃5 and 𝑙3, 𝑃2 from 𝑃1 and 𝑙2, 𝑙1 from 𝑃2 and 𝑃4, and 

finally, 𝑃3 is constructed from 𝑙1 and 𝑃2. 

4.1 Theoretical Foundations: Extending Laman’s Theorem 

Laman’s theorem determines whether a geometric constraint problem is well constrained, meaning 
that the problem has a finite number of solution instances for non-degenerate configurations. 

Laman theorem: Let G = (V, E) be a connected, undirected graph whose vertices represent points in 
2D and edges represent distances between points. G is a well-constrained constraint graph of a 
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geometric constraint problem iff, the deficit of G is 3, and, for every subset U ⊂ V, the induced 

subgraph (U, F) has a deficit of no less than 3. 
  

 

 

Figure 1: A geometric constraint problem (left) illustrating the profile of a box with two blending 
Bezier surfaces. For the 2D profile, we have two conic Bezier curves. The 2D problem translates to 
the constraint graph in the (right) with 12 elementary geometric objects in 2D and 21 constraints.  
 
 

 
 
Figure 2: 3D objects that result from different constraint values of the profile of Figure 1. In all 
configurations d1= 20 cm  and  d2 = 20 cm 

 

 

 
Figure 3: (Left) a GCS problem (A through I are points in 2D and edges represent distances), the 
constraint graph is the same undirected graph. (Middle) three plausible construction sequences for 
placing the three groups of points, every group of points represents a rigid body. (Right) Three rigid 
bodies share a point pairwise. 

 
Laman’s theorem holds even if we extend the repertoire of geometries to any geometry having 2 
degrees of freedom and the constraints to virtually any constraint. However, if we extend the set of 
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geometries to include, for example, variable radius circles (which acquire 3 degrees of freedom), 
then the Laman condition is no longer sufficient. 

Figure 4 depicts a Laman graph in 2D that is not rigid. 𝑉1 is a variable radius circle. 𝑉2, 𝑉3, 𝑉2
′, 𝑉3

′ 

are points. 𝑉4, 𝑉4
′ are lines. 𝑒1, 𝑒2, 𝑒1

′ , 𝑒2
′  are point-to-circle distances (distances from the center of the 

circle). 𝑒3, 𝑒4, 𝑒3
′ , 𝑒4

′   are on constraints. 𝑒5, 𝑒5
′  are distances. 𝑒6, 𝑒6

′  are distances from the circle 

(circumference). 

 

 

 

Figure 4: A constraint graph in 2D. It consists of two rigid bodies that share a 3 dof geometry. 
Although the Laman condition is valid, the graph is not well-constrained. 
 
Graph analysis for spatial constraint problems is not nearly as mature as the planar case. In 3D, the 
Laman condition is not sufficient. Figure 5 illustrates two hexahedra sharing two vertices. If the 
length of the edges is given the GCS that arises is also known as the double banana problem. The 

graph is a Laman graph but the problem corresponds to two rigid bodies (each hexahedron is a rigid 

body) sharing two vertices and is thus non rigid in the sense that the two rigid bodies are free to 
rotate around the axis defined by the two shared points. The problem is also clearly overconstrained 
since the distance of the two shared geometries can be derived independently by each of the two 
rigid bodies. 

 
 
Figure 5: A constraint graph in 3D. Also known as the double banana problem, since it reduces to 
two rigid bodies that share two points. Although the Laman condition is valid, the graph is not well-
constrained. 

Therefore, we propose the following conjecture that extends Laman’s theorem:  

Conjecture 1: A geometric constraint problem is well constrained iff the reduction sequence does not 
derive two rigid bodies that share geometries with a total degree of freedom equal to the degree of 

freedom of a rigid body in the corresponding space (6 for 3D, 3 for 2D).  

If such rigid bodies (that share pairwise 3 in 2D or 6 in 3D dof) appear we can safely conclude 
that the problem is not well constrained. It remains to determine whether the reverse holds. We shall 
study the correctness of Conjecture 1 and provide an efficient algorithm using deep graph reduction 
to determine the well-constrainedness of a geometric constraint scheme.  

Extending the repertoire of reductions: Deep graph reduction 
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The simplest reduction is the triangle reduction (see Figure 3 (right)) which has been studied 
extensively. Figure 6 (left) illustrates two more minimal cases of well-constrained configurations of 
graph constraint problems. 

 

Figure 6: (Left) A minimal well-constrained configuration that consists of five rigid bodies in 2D and 
contains no triangles. (Middle) A constraint problem in 2D: Derive the geometry of a triangle given 
its three altitudes and (right) the corresponding constraint graph that contains no triangle (each 

edge is a rigid body 

 
We propose to systematically generate all such cases of minimal, well-constrained rigid body graphs 
along with the placement of geometries. Then, one can introduce machine learning approaches for 
detecting minimal well-constrained rigid body graphs based on graph density with minCutPool layers 

with spectral clustering in graph neural networks [2] (unsupervised learning) or for detecting certain 
graph patterns with neighborhood kernels in GNNs [6] (supervised learning).  

To increase the scope of our approach, we may (i) include composite geometric objects by 
transforming the composite object to a set of direct and indirect constraints and elementary 
geometries and (ii) extend the repertoire of elementary geometries (e.g., circle of variable radii). 

4.2 The Root Selection Problem: AI-assisted Root Navigation  

A well-constrained geometric constraint system for which we have derived a construction sequence 

based on graph analysis with 𝑚 construction steps and an average of 𝑘 discrete per construction 

steps will have 𝑂(𝑘𝑚) discrete solutions. Fig. 7 illustrates a geometric constraint problem with three 

discrete real solutions (up to rotation and translation). Even the more generic problem of computing 

a real solution for a solvable, well-constrained problem was shown to be NP-hard in a strong 
combinatorial sense [9]. 

We propose developing a user-friendly and powerful tool for the root navigation problem 

employing deep learning. We will use a hybrid GNN-LSTM with attention architecture to choose the 
appropriate solution based on the construction sequence. There will be a training phase with 
hundreds of construction sequences from design libraries. 

We have experimented with an encoder-decoder LSTM scheme with attention that is capable of 
capturing a geometric sequence and providing the final placement for all geometric elements. The 
network is shown in Figure 9. It receives as input the geometric construction sequence (the steps of 
placing the geometric elements with respect to each other) and the initial geometry placement. 
Usually, the initial geometry placement represents the geometric elements as determined implicitly 
by the designer when creating the (incorrect) draft configuration before enforcing the imposed 
geometric constraints. We have trained the network with 40 different geometric sequences with 

several constraint value configurations and initial geometry placements.  
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Figure 7: (a) A geometric constraint problem consisting of four points, four straight segments, four 

point- point distances, and an angle. (b) and (d) Two different solution instances to the constraint 
problem (a). By changing the value of 𝑑3 one may also get solution (c) which yields a non-intersecting 

non-convex closed polyline. In most cases (b) captures design intent since it is the only non-
intersecting convex closed polyline. 
 
For the construction steps we have used a small set of constructions that corresponds to placing a 

line or point in 2D from two point/line geometries (5 different construction steps, we cannot place a 
line in 2D from two other lines since one angle is redundant). We have observed the following: 
 

(i) The network generalizes well to sequences with the same number of construction steps. 
(ii) As we increase the training set, the accuracy of the final placement increases. Probably this 

is because the network learns how to perform each type of placement correctly. 
(iii) The network learns to maintain convexity, thus avoiding the case of Figure 7 (c) 

(iv) The networks learn to enforce the non-self-intersectingness of closed polylines, thus 

avoiding the case of Figure 7 (d), which derives a non-manifold object when used as a 
profile path for extrusion in Figure 8 (right). 

(v) Since we provide only symbolic information in the geometric construction sequence, we 
may use this scheme for a multitude of placement steps, including non-trivial 2D and 3D 
configurations that require numerical constraint-solving techniques. 

 

 
 

Figure 8: Two solutions for extrusion of the profile of Fig. 7. (left) The solution that corresponds to 
the profile of Fig. 7(b) and (right) the solution that corresponds to the profile of Fig. 7(c). 
 

5 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

Geometric Constraint Solving (GCS) undeniably plays a crucial role in Computer-Aided Design (CAD) 
by ensuring the generation of accurate, precise, and consistent parts. This paper proposes addressing 
research challenges by integrating traditional GCS methods with graph theory and machine learning 

approaches. The paper specifically focuses on tackling the well-constrainedness issues in 2D and 3D 
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GCS problems, grounded in the theoretical foundations of GCS. Additionally, the matter of AI-assisted 
root selection for graph-based constructive constraint solving is explored.   
 

 
 

Figure 9: The network architecture for learning to perform geometric construction sequences. 
 
One can employ GCS for placing geometric objects in CAD models. We will investigate cases with (i) 

simple geometries (points, lines, planes, conics, spheres), (ii) composite parts, and (iii) surface and 
curve patches.  

We also suggest investigating encodings of graph construction sequences for generating novel, 
meaningful construction sequences (for CAD). 
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