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Abstract. Traditional musical instrument performance and sound production methods 
have made it difficult to meet the diverse needs of modern music creation. This article 

aims to improve the synthesis and optimization technology of tone quality by using a 
deep-learning algorithm. This article effectively constructs a melody model for the 

complex music structure of an independent encoder using the baseline of a music 
converter. By analyzing models with different baselines, the chord encoding part of 
the music structure was constructed. We constructed sound recognition by 
transforming and generating music under complex conditions. The results indicate 
that the proposed model has higher and richer key performance in the coverage of 

sound chords. Its model benchmark in graphic commerce has been expressed in a 
more diverse way. The histogram and pitch have been better reflected in the richness 
of performance processing. In terms of the instrumental value of music diversity, it 
demonstrates a highly optimized harmony. 
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1 INTRODUCTION 

With the continuous development of society and the improvement of living standards, people's 
pursuit of music is also increasing. Musical instruments have become a great tool for people to relax 
and have fun after work. And electronic instruments, with their unique working mode, can perfectly 

combine traditional instruments with modern digital processing technology. Electronic instruments 
are increasingly being accepted and valued by the public due to their ability to provide more 
entertainment functions. In today's life, more and more entertainment devices are becoming familiar 
and accepted by the public. As the core tool of music creation, the musical instruments' sound 
characteristics and expressive force directly affect the emotional expression and artistic style of 
music works. In response to the serious loss of Chinese folk dance culture, the high cost of traditional 
instrument sound synthesis methods, and the high demand for professional background, Cai et al. [1] 

proposed a comprehensive method for the automatic generation of folk dance movements and 
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instrument sound synthesis. This model can simulate the timbre and performance techniques of 
traditional instruments, and generate high-quality instrument performance audio for a given music 
segment. In terms of dance action generation, it has constructed a sequence-to-sequence network 
model. Through this approach, not only can Chinese folk dance culture be effectively inherited and 

promoted, but also the cost of manual choreography can be reduced, allowing more people to enjoy 
the charm of folk dance [2]. By using advanced feature extraction tools and multi-scale fused 
high-resolution networks, we extract their respective features from music, dance, and instrument 
audio. In terms of instrument sound synthesis, it utilizes features extracted from instrument audio 
and combines deep learning techniques to develop a new instrument sound synthesis model. 
However, the traditional sound production method is limited by physical conditions and human 
factors, and it is difficult to accurately simulate and reshape the sound characteristics of various 

musical instruments. In this experience, sound is not only a core element in building an immersive 

virtual world but also a key starting point for creative and technological exploration.  

Throughout all electronic instrument products currently designed in China, there is a requirement 
to improve timbre and sound quality. Whether it is an electronic keyboard, electric piano, or 
electronic drum, further improvement of sound quality is needed. However, there are still significant 
limitations in improving sound quality and enhancing the quality and quantity of effectors currently 

used in China (due to major manufacturers such as Roland,...) The core chips used by YAMAHA are all 
their own and cannot be purchased on the market. As for most electronic instrument systems 
currently designed in China, there are only system effectors, and the effects are very poor. It is 
difficult to add some effects (i.e., insert effects) to the sound, and even if individual insert effects can 
be added, the quality is relatively poor. Similarly, it is even more impossible to separate the effects of 
music, keyboard, or drum (some advanced electronic instruments can do this). In addition, there are 
significant limitations on the number of pronunciations, as 64 simultaneous pronunciations are no 

longer sufficient to meet the current requirements for simultaneous pronunciations in electronic 

instruments. The current chip platform has significant limitations on further improving sound quality 
and music quality. This requires research on more high-end sound source chips and platforms to 
meet the requirements of system product design. Dong et al. [3] analyzed and compared commonly 
used audio retrieval methods and designed and implemented an abnormal sound monitoring method 
based on the spectral characteristics of sound. Due to the fact that abnormal sound data is often 
much smaller than scene sound data during data collection, the proportion of various types of 

samples is imbalanced, and it is necessary to balance various types of samples. Train audio feature 
parameters using a random forest model to obtain the final predicted category of the input audio 
signal and achieve monitoring of abnormal sounds. In order to verify the performance and cost of the 
algorithm, experiments were conducted on the collected dataset containing abnormal sounds and 
scene sounds. By comparing and analyzing the experimental results, it has been proven that this 
method has good accuracy and real-time performance and can still maintain good performance in 

strong noise backgrounds. Based on the above methods, an abnormal sound monitoring system 

based on sound recognition technology has been developed. This mainly includes a sound monitoring 
function, a real-time query function of sensor status, a visualization function of pickup data, and a 
storage and query function for historical data pickup. A systematic application analysis was 
conducted under different signal-to-noise ratios, using tunnel water inrush accidents as the 
application background. The results show that the system has a strong ability to recognize water 
inrush sounds and resist noise, meeting the requirements of timeliness, and can provide a basis for 

monitoring water inrush accidents. The automatic classification of music is not only a simple speech 
signal recognition problem but also closely related to instrument sound synthesis, both of which 
occupy important positions in the field of music information processing. The synthesis of instrument 
sound usually involves the analysis and simulation of the spectral, timbre, dynamic, and other 
characteristics of instrument sound. These characteristics are closely related to feature analysis in 
music classification. Ge et al. [4] conducted in-depth research on music classification methods based 
on feature analysis and also combined the principles and techniques of instrument sound synthesis to 

systematically explore the principles, methods, and techniques of music classification. Therefore, it 
attempts to apply sound analysis techniques in instrument sound synthesis to feature extraction in 
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music classification, in order to improve the accuracy of music classification. It integrates timbre 
analysis and spectrum analysis techniques from instrument sound synthesis into the feature 
extraction process of music classification. This method can fully utilize the advantages of different 
feature analysis methods to improve the accuracy and robustness of music classification. Through 

in-depth analysis of timbre and spectral features, key information in music can be more accurately 
captured, such as instrument type, music style, emotional expression, etc. Through CAD technology, 
designers can accurately construct the three-dimensional model of musical instruments, and carry 
out acoustic simulation and optimization design. This digital-based design method greatly improves 
design efficiency and quality and enables designers to better understand and master the acoustic 
characteristics of musical instruments. Georges and Seckin [5] explored information visualization 
techniques applied to classical composer databases, and further combined tone quality synthesis 

techniques to reveal the correlation between classical music and contemporary music creation. In an 

era filled with prescribed lists of composers and works, or automated recommendation algorithms, 
our analysis provides an alternative path that may promote active discovery of composers and their 
music in a more free and creative way, and stimulate exploration and experimentation in instrument 
sound synthesis. It further combines data on the influence of style, the "ecology" of composers, and 
data on instrument sound synthesis to construct a comprehensive framework for analyzing the 

impact of composers on their music. In order to present these connections more intuitively, it used 
multidimensional scaling analysis techniques to locate composers on a map while preserving their 
paired distances. In this way, we can clearly see the similarities and differences among composers, as 
well as how these similarities and differences affect the selection and synthesis of instrument sounds. 
In the aspect of tone quality synthesis and optimization, CAD technology can provide rich data 
support for deep learning models, including the geometric structure, material properties and 
vibration characteristics of musical instruments. Wind instruments produce sound through the 

vibration of airflow, and their timbre is influenced by the shape, length, and playing method of the 
pipe. When delving into the Orchid Orchestral Quality (OOQ) framework, we inevitably need to 

address the importance of instrument sound synthesis and its potential connection with the OOQ 
framework. The OOQ framework provides composers with a new perspective by adopting analogies 
with digital signal processing, allowing them to more flexibly manipulate music materials, thereby 
enhancing or reducing their specific quality. Ghisi and Cella [6] adjust the parameters in the OOQ 
framework, such as frequency, amplitude, waveform, etc., to change the timbre, volume, and sound 

quality characteristics of music materials. Different instruments, due to their unique physical 
structure and sound production mechanism, produce their own distinctive timbre and sound quality. 
The synthesis of instrument sound is a crucial step in music production, which involves a deep 
understanding and simulation of the characteristics of instrument sound. These data are very 
important for the training and optimization of deep learning models, which is helpful to further 
improve the accuracy and quality of sound synthesis. Han [7] used ERP technology to design a 

human-machine interaction interface layout optimization framework for instrument sound synthesis 
software. This method combines user habits and cognitive characteristics to ensure that the 

optimization of interface layout matches the actual needs of users. They use the G_1 method that 
supports architecture to determine the importance of human-computer interaction interfaces in 
facing layout goals. By reasonably laying out interface elements, it is hoped to guide users' visual 
attention and enable them to complete sound synthesis operations more quickly and accurately. The 
experimental results show that by applying our proposed ERP-based instrument sound synthesis 

software human-computer interaction interface layout optimization method, user satisfaction has 
been significantly improved. ERP technology can capture the brain activity of users while operating 
the interface, providing a scientific basis for optimizing interface layout. Less than 0.3% of users 
expressed dissatisfaction with the system, which proves the advantage of this method in terms of 
user satisfaction. 

In the research of music emotion recognition (MER) and instrument sound synthesis, researchers 
often rely on supervised learning methods based on music features and corresponding annotations. 

He and Ferguson [8] proposed a two-stage model based on segmentation that combines 
unsupervised learning and supervised learning, emphasizing the potential value of instrument sound 
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synthesis in music emotion recognition. These fragments not only contain melody and rhythm 
information of the music but may also include specific instrument sounds and performance 
techniques. This step helps us capture the characteristics of different instrument sounds in music and 
their interactions, providing richer information for subsequent music emotion recognition. In the 

second stage, we use these unsupervised learned music segment features as inputs for the 
bidirectional long short-term memory deep learning model. Due to the use of fragment-based inputs, 
the model is able to focus on local details in music, while also increasing the size of training samples, 
which helps to reduce the risk of overfitting in deep learning processes. By randomly masking a 
portion of frequency components or time segments, we force the model to learn and recover 
complete music segments from the remaining information, thereby enhancing the model's 
robustness and generalization ability. Although deep learning algorithms and CAD technology have 

great potential and advantages in tone quality synthesis and optimization, the current research and 

application still face some challenges.  

(1) In this study, the deep learning algorithm is combined with CAD technology for the synthesis 
and optimization of tone quality, which brings innovative technical integration to the field of music 
production. 

(2) Through the training of deep learning model, the accurate simulation of different musical 

instruments is realized, which breaks the limitations of traditional sound production methods. 

(3) The 3D modelling and acoustic simulation of musical instruments using CAD technology 
provide abundant data support for the deep learning model and enhance the accuracy and reliability 
of sound synthesis. 

(4) The sound synthesis method based on deep learning has high flexibility and adjustability and 
can generate synthesized sounds with different styles and timbres as required. 

The structure of this article is as follows: Firstly, in the introduction part, the importance of tone 

quality synthesis and optimization in music production and the potential application of deep learning 
algorithms and CAD technology in this field are expounded. Then, the basic principles of deep 
learning algorithm and CAD technology and their applications in sound synthesis and optimization are 
introduced through an overview of relevant theories and technologies. Then, the construction of a 
deep learning model of tone quality synthesis and optimization, and the method of musical 
instrument acoustic simulation and optimization based on CAD technology are discussed in detail. 
Then, the combination of the deep learning model and CAD technology is discussed, and the 

superiority of the proposed method is verified by experiments and results analysis. Finally, the 
research results are summarized in the conclusion and prospect part, and the limitations and 
improvement direction of the research are pointed out. 

2 RELATED WORK 

Huang et al. [9] proposed an end-to-end note detection model based on deep convolutional neural 
networks and feature fusion. Throughout the entire music production process, music object detection 

is a crucial part of the OMR pipeline. It is not limited to the recognition of sheet music, but also plays 
an important role in music production techniques such as instrument sound synthesis. Therefore, 
note recognition is not only the core and key of score recognition but also a crucial link in instrument 
sound synthesis technology. This model can directly process score images and effectively extract 
pitch, duration, and other related features of notes through deep learning and feature fusion 
techniques. This model has achieved significant performance improvement in note recognition, and 
we show its high-precision performance in general music symbol recognition tasks. By inputting 

parameters such as pitch, duration, and timbre of notes into a sound synthesis engine, realistic and 
expressive instrument sounds can be generated. The duration accuracy reached 0.92 and the pitch 
accuracy reached 0.96. These precise data not only demonstrate the effectiveness of the model in 
note recognition but also provide reliable data support for subsequent instrument sound synthesis. 

The application of digital media technology in various fields is increasingly deepening, not only 
promoting the development of various social classes but also opening new doors in the fields of art 
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and innovation. Jiang [10] studied the digital media application technology of mobile terminals based 
on edge computing and virtual reality and paid special attention to the application of these 
technologies in musical instrument sound synthesis. The research used SD-CEN (software-defined 
central edge network) architecture and FWA (a specific optimization algorithm, such as a fuzzy 

weighting algorithm) to carry out simulation experiments in the edge computing environment. 
Compared with traditional cloud computing architectures, SD-CEN-based network architectures 
exhibit significant advantages in instrument sound synthesis. Especially in the field of instrument 
sound synthesis, the application of digital media technology provides unprecedented creative 
possibilities for musicians and sound designers. By using the methods of edge computing and virtual 
reality, audio signals can be captured and processed in real-time, and then the realistic sound of 
musical instruments can be synthesized. This architecture can optimize the allocation of network 

resources, ensure efficient processing of audio data at edge nodes, thereby reducing latency and 

improving the real-time and quality of synthesized sound. The results show that FWA performs 
outstandingly in reducing the response delay of real-time instrument sound synthesis services, and 
can significantly improve the user experience.  

Klein et al. [11] proposed a cross-modal steady-state effect that not only reveals how music 
affects the inverted U-shaped relationship between visual perception complexity and people's liking 

but also delves into the unique role of instrument sound synthesis. When elements carefully crafted 
through instrument sound synthesis techniques are incorporated into the music, this influence is 
enhanced. This influence is not only reflected in changes in personal preferences but may also affect 
the audience's overall evaluation of visual advertising or products in the business environment. 
Specifically, we found that music (regardless of its complexity) typically shifts the optimal level of 
visual complexity towards people preferring relatively simple visual effects. When soft piano 
synthesized sounds are added to the background music, the audience may be more inclined to prefer 

visual designs with a minimalist and fresh style. These synthesized sounds can guide the audience's 

attention, thereby influencing their perception and preference for visual complexity. They remind us 
that when designing and presenting visual content, it is necessary to fully consider the influence of 
music, especially when specific instrument sound synthesis is incorporated into the music. Lossy 
audio codecs reduce file size by removing redundant information that is imperceptible to human 
hearing when compressing (and decompressing) digital audio streams. In addition to the audio 
enhancement and compression artefact removal, Lattner and Nistal [12] further explored the 

combination of instrument sound synthesis and audio restoration technology. During the training 
process, it pays special attention to the synthesis of instrument sounds. By introducing instrument 
sound libraries and specific synthesis algorithms, the generator can learn the unique features and 
timbre of instrument sounds. This random generator is conditional on highly compressed music audio 
signals, with the goal of producing outputs that are indistinguishable from instrument sounds in 
high-quality distribution versions. Research has found that compared to the 16 and 32kbit/s MP3 

versions that only use traditional audio restoration techniques, a random generator combined with 

instrument sound synthesis can significantly improve the quality of audio signals, especially in terms 
of instrument sound clarity and timbre. However, high compression rates may introduce audio 
damage, which is particularly significant in the music field as they may affect the clarity and timbre 
of instrument sound.  

Recommendation systems have been proven to be effective tools in predicting users' current 
music preferences. Liang and Willemsen [13] explored the development of user preferences in the 

field of instrument sound synthesis. Compared to users with lower music expertise, users with a deep 
music background exhibit higher preference consistency in selecting instrument sounds and 
synthesis effects. In instrument sound synthesis, users usually tend to choose tones and effects that 
are similar to their current preferences. However, further research is needed on how user preferences 
in instrument sound synthesis evolve over time and how these preferences affect the synthesis 
process. However, suppose the recommendation system can guide users to explore tones or effects 
that are slightly different from their current preferences, especially those that can stimulate new 

creativity. In that case, we may see users more open to experimentation and more innovative 
synthesis works. More representative default sliders, such as those recommending more 
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representative genres of sound, may allow users to set sliders at a less personalized level, thereby 
limiting their creative space. Combining instrument sound synthesis with music visualization can 
create a brand-new music experience, helping people better understand and experience the charm of 
music and instrument sound. Liao [14] introduced the concept of music visualization and explored 

how to combine instrument sound synthesis with music visualization technology, as well as how to 
use deep learning algorithms to achieve this goal. Through this method, they associate the audio data 
synthesized from instrument sound with image data, thereby visually presenting the characteristics 
and changes of instrument sound. In order to fully utilize the emotional information in music and 
images, the visualization results can more accurately reflect the emotions expressed in music. By 
training models to simultaneously recognize emotional features in music and images, we can make 
music visualization results more vivid and infectious. The experimental results show that when the 

weight of the emotion classification loss function is set to 0.2, the improved deep learning-based 

music visualization algorithm has the highest matching accuracy.  

Liao and Gui [15] proposed an innovative sparse feature extraction method based on sparse 
decomposition techniques and multiple instrument component dictionaries. This method first 
constructs a dictionary containing multiple instrument sound samples, which cover the sound 
characteristics of various instruments under different pitch, volume, and performance modes. By 

sparse decomposition of the input mixed instrument music signal, we can represent the signal as a 
sparse combination of elements in the dictionary, i.e., a sparse coefficient vector. Compared with 
existing methods, this method not only reduces the dependence on data labels but also goes beyond 
the limitations of only based on frequency domain or physical features, thus achieving significant 
performance improvement. This is because the synthesis of instrument sound is often closely related 
to the emotional expression of the performer, and sparse feature extraction methods can reveal the 
specific expression of this emotion in music signals. By analyzing these sparse coefficient vectors in 

depth, we can extract independent sparse music features. These features not only have high 

interpretability and can intuitively express the composition of musical instruments, but also 
accurately capture the changes in emotions in music [16]. By integrating the results of instrument 
sound synthesis into the visualization process, we can more clearly see the impact of different 
instrument sounds on the overall style of music. The clustering algorithm is used to discover 
similarities between different music works and classify them into different music genres or styles. In 
terms of audio editing, the system provides an intuitive and user-friendly interface, allowing users to 

easily crop, splice, and fade in and out audio. In terms of instrument sound synthesis, this system 
combines modern music production technology and computer technology to achieve simulation and 
synthesis of instrument sound [17]. This system can not only perform high-precision digital 
processing on recorded sounds but also present them intuitively on computer screens in the form of 
sound waves. At the same time, the status of all editing operations will be recorded in detail in the 
database, providing rich feedback and reference information for teaching and training. Students can 

create music in an intuitive and visual environment, deepening their understanding of music theory 

and methods through practical operations. It also integrates advanced instrument sound synthesis 
technology, providing a comprehensive and interactive teaching and learning platform for students 
and teachers [18].  

3 SYNTHESIS AND OPTIMIZATION MODEL OF TONE QUALITY 

3.1 Music Feature Analysis 

In the realm of audio processing, a common assumption is that audio signals exhibit short-term 
stationarity, implying that within a brief temporal window (spanning approximately 20 to 40 
milliseconds), the sinusoidal model's parameters remain largely stable. Leveraging this attribute, a 
short-duration audio signal can be viewed as a succession of nearly time-invariant sine waves. For 
audio signal gain adjustment, if the adjustment duration significantly exceeds the audio's natural 

variation cycle, say, 5 seconds, the gain alterations will tend to be gradual, minimizing abrupt 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 22(S1), 2025, 283-296 

© 2025 U-turn Press LLC, http://www.cad-journal.net 
 

289 

fluctuations. This approach considers the audio's output characteristics to maintain processing 
stability. 

However, in certain scenarios, like a marked rise in audio output intensity, prompt gain reduction 
is imperative to prevent equipment damage. This rapid adjustment mechanism is a vital component 

of audio processing. Moreover, when the audio output surpasses a predefined threshold, ensuring 
accuracy and responsiveness necessitates setting the gain adjustment time to a minimal 0.5 
millisecond. Figure 1 graphically depicts sound source separation technology. 

 

 
 

Figure 1: Schematic diagram of sound source separation technology. 
 

The characteristics of sound mainly include four core dimensions: pitch, length, sound intensity and 
timbre, which correspond to the frequency, duration, amplitude and complexity of spectrum 
distribution of sound vibration respectively. Pitch is one of the most intuitive properties of sound, 
which is determined by the number of times the sound source vibrates in a specific time. When the 

number of times an object vibrates per unit of time increases, the generated pitch will increase 
accordingly, which is manifested by the increase of sound wave spacing; On the contrary, if the 
number of vibrations decreases, the pitch decreases and the sound wave spacing decreases. This 
article focuses on stringed instruments, especially taking the piano as an example, to deeply discuss 
these characteristic parameters of audio. As a typical stringed instrument, the piano's sounding 
mechanism is that the internal strings vibrate by tapping the keyboard, and then sound is produced. 

Each key of the piano corresponds to one or more strings. Striking different keys will trigger strings 
with different lengths to vibrate, thus producing sounds with different pitches. Furthermore, the 
duration of string vibration determines the length of the sound, and the amplitude affects the sound 

intensity, while the material of strings, production technology and the design of the resonance cavity 
jointly affect the performance of timbre. 

Use the lateral propagation of sound waves to illustrate this process. The tension of the strings is 

T , the density is , the cross-sectional area is A , and the length is 1. The strings are divided into 

1n  segments with n  the number of dividing points. The free vibration response of the strings is: 

   

1 1

1 2
1 0 0

2 2
, sin cos sin sin sin

1 1 1
n

n n
n

pn n
y x t f x xdx p t f x xdx p t x

nc c
           (1) 

The natural frequency of the system is: 

      1,2,3,
1n

n T
p n

A
                                   (2) 
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When 1n , np  is called the fundamental frequency, which determines the pitch. It is found that 

there is an inverse relationship between the fundamental frequency of sound waves and density, and 
it is also inversely proportional to the length of the strings but directly proportional to the tension on 
the strings. Strings have different natural frequencies because of their different elasticity. When the 
rope is tightened, the pitch will rise accordingly, and vice versa. The total vibration form of strings is 
composed of the superposition of the amplitudes of many traveling waves. Among them, lateral 
vibration is the most basic vibration mode, and the decisive factor of timbre is segmented vibration 

mode, and amplitude directly affects the strength of sound. When an external force acts on the 
strings to deform them and make sounds, the generated sound waves will show different vibration 
amplitudes according to the different positions of the excitation points. Especially when the excitation 
point happens to be on the syllable, the homophonic will be obviously suppressed. 

3.2 Musical Instrument Acoustic Simulation 

The duration of a note signifies the extent of its sonic length, dictated by the time span of the 
vibrating pronunciation body. Conversely, pitch is primarily influenced by the rate of sound wave 
vibrations, with faster frequencies correlating to higher pitches and a more acute sound quality. 
Conversely, deep voices typically stem from lower pitch levels, a result of slower sound wave 
vibration frequencies. 

In order to promote the learning of the model, the music should be preprocessed before it is 

encoded. Firstly, the MIDI input is quantized. Since most notes can be expressed by sixteenth notes, 
in the past, sixteenth notes were used as the time resolution in most music generation work in the 
symbolic domain. However, melodies that cannot be expressed by sixteenth notes, such as octave 
trio and thirty-second notes, have been abandoned in most studies at present, which will reduce the 
learnable characteristics of the model and reduce the learning effect of the model. Therefore, in this 

article, each input melody is quantized to 16 time steps in a bar, that is, 4 time steps per beat, and 
the sixteenth note is the minimum resolution of the duration. Figure 2 shows the process of 

quantizing irregular rhythm notes into sixteenth notes from two forms: symbol and piano roll. 
 

 
 

Figure 2: Quantitative comparison of score and piano roll. 
 

In addition to quantization, the music should be tone-modulated. The distribution of key signatures in 
data sets is often uneven, and the pitch distribution of notes may be very different in different key 
signatures. In order to ensure the reliability of the experimental results, this article converts all the 
music into C major or A minor to make all the music consistent, so that the model can effectively learn 

the music patterns. 
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When the length is T , the melody sequence is: 

      1, 1 2, , ,T Tm m m m                                      (3) 

The chord sequence is: 

      1, 1 2, , ,T Tc c c c                                       (4) 

When the time step 1,2, ,t T , the model generates four chord vectors 1st
tc , 2nd

tc , 3rd
tc  and 1th

tc : 

    1, 1 2, , ,T Tc c c c                                        (5) 

Among them, cM  is a chord generation model based on Transformer  the model, c  its parameter, 

and 1,2,3,4n  the index of the chord vector. The chord sequence at tc  moment can be obtained 

by combining the four outputs with time step t . 

In the realm of music signal processing, a diverse array of window functions are frequently 

employed, with the rectangular window and Hanning window serving as notable examples, alongside 
others: 

Rectangular window: 

        1,0 1w n n N                                      (6) 

Hanning window: 

   0.5 1 cos 2 ,0 1
1

n
w n n N

N
                             (7) 

When considering the frame length of a music signal, denoted as N it's crucial to understand that the 

choice of window function significantly impacts the analysis of its characteristic parameters.  

   
1

s

f
NT

                                             (8) 

4 EXPERIMENT AND RESULT ANALYSIS 

This model effectively solves the challenges faced by RNN in processing long-sequence music 
generation and has achieved remarkable results in reducing the complexity of spatial computation, 
which has a far-reaching impact on the field of music generation. On the other hand, Pop Music 

Transformer has been upgraded on the cornerstone of Music Transformer. By introducing a new 
representation, REMI, the generation effect of long-sequence music has been optimized. Because 
these two models have their own characteristics and use different representations, they are chosen 

as the baseline model of this article. In the model of this article, although the input sequence also 
covers the melody and chord of music, the processing method is different: the melody and chord are 
disassembled into independent sequences respectively, and then encoded by two encoders, and then 
input into the decoder. In order to verify the practicability of this study, we designed experiments and 

obtained the objective assessment index results of the baseline model and this model (Figure 3). 
Figure 3 shows the comparison data of five assessment indexes between the chord and melody 

double coding model proposed in this article and the baseline model Music Transformer. The direction 
of the arrow in the table indicates the advantages and disadvantages of the numerical value: the 
higher the numerical value, the better, and the lower the numerical value, the better. The optimal 
results of each index are specially marked. The data show that the music generation model proposed 
in this article outperforms the baseline model in terms of chord coverage (CC), chord histogram 

entropy (CHE) and chord pitch distance (CTD). Specifically, the high values of CC and CHE reflect the 
richness of chord types, which means that this model can generate more diverse music. However, the 

improvement of chord diversity may sacrifice some smoothness, so the model in this article scores 
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higher on the CTD index; that is, the smoothness of chord conversion is slightly lower than that of the 
baseline model. 

 

 
 

Figure 3: Objective assessment of music transformer and improved model. 
 

The high score of the ratio of the chord to the inharmonic chord (CTnCTR) shows that there are fewer 
inharmonic chords in the music generated by this model, which is closer to the practice of artificial 
composition, thus enhancing the musicality. On the other hand, in terms of pitch and harmony score 
(PCS), because the baseline model adopts the training mode of combining melody and chord input, 
its harmony is better than the separate input processing of this model. 

In addition to evaluating chord quality and harmony, an assessment experiment of model 
structure is also designed. Although the enhanced Transformer-XL model is selected for Pop Music 
Transformer, which adds fragment-level loop and relative position coding, considering that the 
transformer in Music Transformer already has relative position coding and the computational space 
complexity is lower, in order to optimize the computational time and space efficiency, the model 
structure improvement in this article is based on Music Transformer. Therefore, in the experiment, 
apart from the above baseline model, the Performance RNN and Transformer model without relative 

position representation are also introduced to evaluate the performance of the Music Transformer 
comprehensively. The experimental results are shown in Table 1 (the numbers in brackets represent 
the model layers). 

 

Model NLL 
Performance RNN (3L) 1.899 

LSTM for increasing attention mechanism 
(3L) 

1.917 

Transformer (6L) 1.801 

Music Transformer (baseline model, 6L) l.778 

Improved model (6L+2self-attention) 1.755 

 
Table 1: NLL values of different models. 

 

The models in the above table are arranged according to the proposed time sequence. From the table, 
it can be seen that the NLL value of the baseline model is less than the results of the first three 
models, which shows that the performance of the Music Transformer model proposed later is superior 
to the previous model and it is very reasonable to use Music Transformer as the baseline model of this 

article. In addition, the NLL value of the model after adding two self-attention layers is the smallest, 
which shows that the baseline model is optimized by adding two self-attention layers. 
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Figure 4: Cross entropy loss value (a) and accuracy (b). 
 

Figure 4 is a visual presentation of the above experimental results, Figure 4(a) is a trend diagram of 
the loss value of model training, and Figure 4(b) is a corresponding trend diagram of accuracy. It can 
be seen that the results of the two models are very close, but the loss value of the baseline model is 
still slightly higher than that of the improved model, so adding two self-attention layers really 
improves the learning performance of the model. 

In the synthesis and optimization of tone quality, deep learning algorithms and CAD technology 

are used to simulate and enhance the characteristics of tone quality. Because the sound of musical 
instruments contains rich harmonic information, the harmonic characteristics of music signals are 
fully utilized in the stage of pitch estimation and timbre simulation. In the pitch estimation stage, only 
the energy information of the fundamental frequency and its harmonic components is effective for 

extracting the main melody, while other frequency energies may constitute interference. Figure 5 
shows the results of pitch estimation in the presence of fundamental frequency. Through the deep 
learning model, the fundamental frequency in the music signal can be accurately identified, and the 

timbre simulation can be carried out accordingly. 
 

 
 

Figure 5: Pitch estimation results in the presence of fundamental frequency. 
 

Figure 5 aims to demonstrate the performance of music converters, popular music converters, and 
improved models in pitch estimation (fundamental frequency detection). In music signal processing, 
fundamental frequency (also known as pitch) is the lowest frequency component in a sound signal, 

which determines the efficiency of automating the music conversion process. Figure 5 contains 

multiple curves representing the fundamental frequency estimation results of the music converter, 
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popular music converter, and improved model on the same audio signal. By comparing these curves, 
the accuracy and stability of different models in pitch estimation can be evaluated. It can be seen that 
the improved model has the best efficiency in process automation. This indicates that CAD technology 
can be used to simulate the physical structure of musical instruments and deep learning models can 

be used to learn and imitate specific features of musical instrument sound. In this study, CAD 
technology is used to simulate the physical structure of musical instruments and a deep learning 
algorithm is combined to simulate the timbre of musical instruments. By training the deep learning 
model, we can learn the characteristics of musical instrument sounds and produce timbre similar to 
real musical instruments when synthesizing. 

The creation of multi-tone music signals stems from the overlaying of sound wave patterns 
generated by diverse musical instruments during recording. One notable challenge lies in the 

disentanglement of the spectrum originating from various sound sources, aiming to assign them to 

their respective musical notes. This study tries to solve this problem by using separation technology 
in deep learning algorithms, such as source separation or sound source localization. Figure 6 shows 
the comparison of recall rates when using different classifiers for spectrum separation. 

 

 
 

Figure 6: Recall of different classifiers on spectrum separation. 
 

Figure 6 shows the comparison results of recall rates in music signal spectrum separation tasks using 
different models (including music converters, pop music converters, and an improved model). Figure 
6 contains three curves representing the recall performance of the music converter, popular music 
converter, and an improved model in the spectrum separation task. These curves show the trend of 

changes in recall rates for each model as the number of iterations increases. By observing these 

curves, we can compare the performance of different models in spectrum separation tasks. The 
improved model curve remained above the other two curves throughout the entire iteration process, 
indicating that the model outperformed the other two models in spectrum separation tasks. By 
optimizing the structure and parameters of the deep learning model, the accuracy and efficiency of 
spectrum separation are improved.  

Figure 7 illustrates the accuracy of the initial pitch achieved by this method across diverse 
databases, indicating its consistency and reliability in achieving high accuracy across different data 
sources. Figure 7 shows the accuracy of different models (including music converters, pop music 
converters, and an improved model) in estimating initial pitch (or fundamental frequency) on 
different music databases. Accuracy is an indicator that measures the degree of closeness between 
the estimated pitch of a model and the actual pitch. The horizontal axis represents different music 
databases or datasets. Due to the diversity and complexity of music data, the performance of models 

may vary on different datasets. Therefore, evaluating the performance of the model on different 

datasets can provide a more comprehensive understanding of its performance. The vertical axis 
represents the accuracy of pitch estimation. 
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Figure 7: Original pitch accuracy of this method on different databases. 
 

This method quantifies the difference between the model's estimated pitch and the actual pitch. The 
higher the value, the higher the accuracy of the model. The improved model has the highest 
accuracy. By adjusting the learning rate, a balance point is found in the study, which ensures the 
system's stability and improves the training efficiency. This method can accurately estimate pitch, 
simulate timbre, and effectively separate different instrument sounds in multi-tone music signals. 

5 CONCLUSIONS 

This study has made breakthrough progress in the field of instrument sound synthesis and 
optimization, thanks to the clever combination of deep learning algorithms and CAD technology. In 
the experiment, we continuously optimized the architecture and parameters of the deep learning 
model, successfully achieving precise separation of different sound source spectra and converting 
them into corresponding notes. In addition, the use of CAD technology to simulate the physical 
structure of musical instruments provides valuable data support for deep learning models, 

significantly improving the quality of sound synthesis. We have delved into the harmonic 
characteristics of music signals and accurately captured and simulated the pitch and timbre of real 
instruments through carefully designed deep-learning models. It also tested the accuracy of the 
original pitch on multiple databases and delved into the impact of learning rate on system 
performance. And found an ideal balance point, which not only ensures the stable operation of the 
system but also improves training efficiency. Meanwhile, this study also provides valuable experience 

and inspiration for the application of deep learning algorithms and CAD technology in other fields. The 

application of this technology not only improves the accuracy and efficiency of spectrum separation 
but also opens the door to music innovation for us. It not only provides a new sound synthesis and 
optimization tool for music producers but also provides rich teaching resources and means for music 
educators. 
 
Jinxing Mu, https://orcid.org/0009-0003-8047-5945 
Jie Tian, https://orcid.org/0009-0004-6375-0332 
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