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Abstract. At present, the functional software of computers can effectively help us 
understand the layout of functional spaces in designing buildings. Computer 

technology has become an indispensable factor in the perception analysis process of 
indoor environment design. In order to more efficiently evaluate the accuracy of 
computer layout optimization and conduct an investigation and analysis of advanced 
design tools for indoor space layout optimization, this article used visual analysis tools 
for interior design in the process of computer model design analysis to accurately 

design the plan. A deep learning-based indoor user space enhancement experience 
optimization model has been proposed. 
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1 INTRODUCTION 

Accurate interior design art is of great significance for the study of interior design history, the 
protection of interior design heritage, and urban construction. By aggregating the neighborhood 
features of nodes to update the feature vectors of each node, a classifier related to semantic data is 
generated [1]. Therefore, in order to create image label data for interior design. At present, there are 
two main shortcomings in interior design art: firstly, due to the uniqueness of interior design styles, 

most feature extraction methods make it difficult to extract key features of interior design styles 
effectively. However, due to the similarities between different interior design styles and the 
differences within the same interior design style, the dataset lacks labeled interior design categories 
[2]. Channel spatial attention can focus on important regions in the image that are relevant to the 
task and ignore unimportant elements. Graph convolutional networks can use knowledge graphs to 
express relationships between categories [3]. Therefore, using zero-sample classification techniques 
to classify interior design images with missing label data has become a worthwhile research topic. In 

the absence of information, it is possible to effectively extract the main body and detailed features of 
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interior design, and explore the strong semantic labels between different styles. The emerging 
interior design retains early interior design elements, with similar relationships between semantic 
labels of different categories, making it difficult to learn classifiers with high fitness. Channel 
attention network learns different channel weights to locate interior design objects in images; The 

spatial attention network embeds location information into the channel attention map to capture 
detailed features in the target, obtaining feature representations with dual dimensions of channel and 
space. Firstly, two models, channel attention and spatial attention, are introduced to enhance the 
representation of specific regions in the image. To effectively locate interior design elements related 
to classification tasks in interior design images, a zero-sample interior design image classification 
method based on a dual attention mechanism is proposed. This article studies zero sample indoor 
design image classification based on a dual attention mechanism and weighted graph convolutional 

network [4]. 

Secondly, to reduce information loss during spatial mapping, a generator is used to reconstruct 
visual features. Firstly, utilize feature extraction networks to extract interior design features and 
expand them into vector representations. The experiment verified the effectiveness of the method. 
Considering the strong correlation between semantic labels of interior design styles, we use explicit 
knowledge graphs to mine the relationships between categories. Finally, design a zero sample 

interior design image classification model embedded in public spaces, align visual and semantic 
features in subspaces, and achieve classification tasks through nearest neighbour matching. Improve 
the clustering of interior designs within the same category, enhance the differentiation between 
different categories, and train classifiers for all interior design categories. Calculate the distance 
between semantic features and weigh the relationships between nodes. Use a weighted graph 
convolutional network to train and update the features of nodes, in order to alleviate the problem of 
over-smoothing caused by too many network layers. Propose a zero sample indoor design image 

classification method based on a weighted graph convolutional network. Construct a graph structure 

using the hierarchical distance relationship between all style labels as prior knowledge [5]. The 
experimental results show that the proposed method improves the average classification accuracy by 
0.6 percentage points on the interior design style dataset compared to the current zero-sample 
learning method. Perform dot product operation between visual features and classifier, and use the 
classifier to classify unknown styles during the prediction process, further enhancing the 
transferability of the model. To determine the optimal direction of the IRS mirror array, we face a 

complex optimization problem. This problem is non-convex, and traditional methods are difficult to 
solve directly. Through simulation experiments, we have verified the effectiveness of the proposed 
IRS-assisted VLC system design and optimization algorithm in overcoming LoS blocking problems. A 
partially proposed IRS-assisted VLC system model takes into account the uncertainty of user 
behaviour and the complexity of indoor environments [6]. 

In order to improve the efficiency and effectiveness of building signage system design, some 

scholars have innovatively developed AUTOSIGN - an advanced tool integrated into a 

computer-aided design (CAD) environment, which is specifically designed for cyclic and 
multi-standard optimization of signage layout in complex buildings. By utilizing the powerful search 
capability of evolutionary algorithms and combining it with the designer's experience weighted 
cognitive heuristic objective function, a comprehensive exploration and optimization of possible 
navigation path combinations can be carried out. This process aims to maximize the information 
coverage area of the signage, ensuring clear and effective navigation guidance at key decision points, 

high-traffic areas, and easily lost areas while reducing unnecessary visual interference and path 
overlap. To cope with competing goals such as minimizing the total distance travelled, reducing the 
number of turns, optimizing the centrality of decision points, avoiding path overlap, and streamlining 
the number of decisions, while ensuring compliance with user-set signage position and direction 
constraints. AUTOSIGN not only transforms the problem of signage placement into a complex 
multi-objective optimization challenge but also cleverly integrates indoor layout optimization models 
[7]. The introduction of indoor layout optimization models enables AUTOSIGN to automatically adapt 

to the unique spatial characteristics of different buildings, quickly generate signage layout schemes 
that meet requirements, and greatly shorten the design cycle. Subsequently, a particle swarm 
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optimization algorithm was used to finely adjust the specific position and orientation of the signage 
for each optimized navigation path. Image segmentation is a crucial step in image processing. Image 
segmentation plays an important role in tasks such as 3D reconstruction in interior design. Then, a 
reasonable number of classifications and representative initial centre points are obtained through the 

colour histogram of the image. The K-means algorithm for interior design has the characteristics of 
strong adaptability and high efficiency, but it relies on user input parameters. In addition, classifying 
pixels based solely on the Euclidean distance between pixel coordinate positions cannot fully describe 
the distribution characteristics of pixels, which can easily lead to misclassification of pixels. However, 
existing segmentation algorithms are difficult to perform well in the face of diverse segmentation 
objects, and therefore cannot meet the needs of users [8]. Therefore, it is necessary to propose an 
efficient interior design image segmentation algorithm. Some scholars believe that the essence of 

image segmentation is the clustering of pixels as the basis for analysis, and combine specific 

segmentation methods with segmentation objects to analyze and study the K-means algorithm. 
Some scholars have proposed an interior design image segmentation algorithm based on improved 
K-means. Firstly, through preprocessing, the clustering objects of the algorithm are converted into 
pixel blocks, effectively reducing the computational complexity of the algorithm. Re-analyze the 
characteristics of interior design images, use multidimensional feature constraints to calculate the 

similarity between pixel blocks, avoid misclassification of pixel blocks, and improve image 
segmentation performance [9]. At the same time, this process will also stimulate their innovative 
thinking and creativity, enabling them to better cope with complex and ever-changing design 
challenges in their future careers, and become high-quality talents with innovative abilities and 
practical skills. This article is based on this background, deeply exploring the application of interior 
layout optimization models, and proposing a DL based interior layout optimization model, in order to 
provide new ideas and methods for interior design education and practice [10]. 

On the basis of existing research, this article further explores and proposes a DL-based indoor 

layout optimization model. This innovation not only improves design efficiency but also makes the 
layout optimization process more intelligent and automated, providing new technological support for 
the future development of interior design. This study spans multiple disciplines such as computer 
science, interior design, and education, achieving an organic integration of interdisciplinary 
knowledge.  

The beginning of this article provides an in-depth analysis of the macro background and profound 

significance of the research. Subsequently, the article focuses on the innovative application of indoor 
layout optimization models and conducts a comprehensive and detailed exploration. On this basis, we 
elaborated in detail the construction process and algorithm logic of the indoor layout optimization 
model driven by DL technology, demonstrating the enormous potential of technology integration in 
improving design efficiency and accuracy. To verify the actual effectiveness and feasibility of the 
model, we carefully designed and implemented a series of rigorous experiments. Finally, in the 

summary and outlook section, this article highly summarizes the core findings and innovative 

highlights of the DL-driven indoor layout optimization model. 

2 RELATED WORK 

Constructing advanced structured 3D models of real-world indoor scenes from captured data is a core 
task at the intersection of computer graphics and computer vision. Shen et al. [11] studied various 
input sources, including but not limited to laser scanning, RGB-D camera data, photo collections, and 
user inputs, each with its unique characteristics and challenges. In the integration of indoor layout 

optimization models and computer-aided design, we have noticed that building an efficient and 
user-friendly indoor scene reconstruction system requires not only high-precision 3D reconstruction 
technology but also the layout optimization capabilities of CAD systems. Meanwhile, in order to bridge 
the gap between imperfect inputs and ideal outputs, Turgut and Kakisim [12] introduced rich prior 
knowledge, such as common patterns of indoor spatial layout, correspondence between furniture 

dimensions and functions, etc. Given the complexity and variability of indoor environments, as well 
as the common noise and incompleteness in data capture processes, despite significant technological 
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advancements, there are still many open research questions that urgently need to be addressed in 
the face of these challenges. At the output end, it defines the standards for advanced structured 3D 
models, emphasizing the need for the model to accurately reflect key elements such as geometry, 
materials, lighting, and furniture layout of indoor spaces. Its importance in various fields, such as 

architectural design, virtual reality, augmented reality, and smart homes, is becoming increasingly 
prominent. This survey not only summarizes the latest developments in the field but also delves into 
the complementary advantages of computer graphics and computer vision technology. CAD systems 
are adept at handling complex interior layout designs, automatically adjusting furniture positions, 
optimizing space utilization, and considering personalized factors such as pedestrian flow and 
visibility. Based on the reconstructed 3D model, automatically detect and adjust unreasonable 
furniture layouts to improve the rationality and comfort of space use. 

Yang [13] deployed multiple virtual cameras in the virtual space of a three-dimensional indoor 

environment, capturing detailed views of the environment from different angles by simulating 
camera rotation and movement and generating a series of high-quality 2D images. A K-means 
parameter adaptive algorithm based on a colour histogram is proposed to address the sensitivity of 
a K-means-based colour image segmentation algorithm to initial parameters. Yang et al. [14] 
proposed a multidimensional feature similarity calculation algorithm, which is suitable for the 

segmentation of colour-building images. This algorithm analyzes the characteristics of color-building 
images and proposes to separately calculate the similarity of pixel blocks in color, texture, and spatial 
position features and combine the three as the final similarity to divide pixel blocks. Use the peak 
point count and corresponding K pixel blocks as the classification number and initial centre point, 
respectively. The algorithm first establishes a colour histogram of the image in the HSI colour space, 
and vertically and horizontally scans the colour histogram to obtain peak points with high density and 
a certain distance apart. Due to the utilization of the overall colour distribution characteristics of the 

image, a more reasonable number of classifications and initial centre points were obtained. The use 

of multi-feature constraints can comprehensively describe the local and global distribution of pixel 
blocks in an image, improve the classification accuracy of pixel blocks, and effectively segment 
buildings into meaningful regions. Traditional methods focus on analyzing the complex structure of 
indoor environments through spatial layout, semantic understanding, and functional relationships 
between objects, providing a basic framework for scene generation. This combination enables the 
algorithm to generate aesthetically pleasing and practical interior design solutions, greatly improving 

the intelligence level of the design. CVAE maps input scene information to a latent Gaussian 
distribution space through an encoder, and a generator samples noise from this distribution and 
decodes it into a new scene layout. However, with the advent of the big data era and the 
improvement of computing power, we have proposed an innovative approach. In order to further 
meet the diversity requirements of furniture layout, Zhang et al. [15] innovatively combined 
conditional variational autoencoder (CVAE) with a graph neural network. In the context of 

computer-aided design (CAD), the introduction of interior layout optimization models has added new 

dimensions to furniture layout. Embedding unstructured furniture data into graphical structures and 
utilizing the powerful capabilities of Graph Neural Networks (GNNs) to iteratively learn and capture 
the intrinsic distribution patterns of scene layouts. 

The research in the field of interior layout optimization is undergoing rapid deepening and 
expansion, from the profound exposition of classical layout theory to the rapid rise of modern DL 
algorithms. The rapid advancement of technological means continues to open up unprecedented 

possibilities and innovative dimensions for the field of interior design.  

3 APPLICATION OF INDOOR LAYOUT OPTIMIZATION MODEL 

3.1 Indoor Layout Optimization Model 

The interior layout optimization model, as a core tool in the field of modern interior design, is 

ingenious in using advanced computer algorithms to finely and scientifically plan indoor spaces. This 
model not only understands the essence of space utilization but also takes into account key factors 
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such as lighting, ventilation, and dynamic layout and strives to maximize the function and experience 
in every inch of space. Through complex and precise computational logic, indoor layout optimization 
models can quickly generate diverse layout schemes, each of which is a deep exploration and clever 
reconstruction of the spatial potential. These plans not only consider the physical properties of the 

space, such as area, shape, height, etc., but also incorporate the concept of humanized design to 
ensure that the spatial layout meets both functional requirements and the psychological feelings of 
residents. 

After generating the plan, the model will further apply simulation analysis techniques to evaluate 
and compare each plan comprehensively. Every detail, from maximizing space utilization to 
optimizing lighting and ventilation effects to ensuring a smooth layout, has been rigorously 
considered and finely adjusted. In the end, the model will select the optimal solution, which is the 

perfect layout scheme that can meet the diverse needs of users and achieve efficient utilization of 

spatial resources. In short, the interior layout optimization model has brought unprecedented 
changes to the interior design industry with its powerful computing power and scientific planning 
concepts. It not only improves design efficiency and quality but also promotes the development of 
indoor space planning towards a more intelligent, personalized, and efficient direction. 

3.2 CAD 

The application of indoor layout optimization models in CAD teaching has injected new vitality and 
depth into the curriculum. CAD software is not only an important tool for interior designers to express 
their creativity and draw drawings but also a key platform for implementing interior layout 
optimization strategies. In teaching, teachers first explain the core concepts and algorithmic logic of 
indoor layout optimization in a clear and concise manner, helping students construct theoretical 

frameworks and understand how to improve space utilization efficiency and living experience through 
scientific methods. Subsequently, by selecting typical interior design cases and combining them with 

practical demonstrations of CAD software, students were allowed to operate by hand, incorporating 
layout optimization thinking into every step, from precise drawing of 2D planes to simulated 
construction of three-dimensional spaces. In the process of 3D modeling, students not only need to 
master the creation of object shapes but also need to learn how to use CAD tools to analyze light and 

wind directions, optimize flow design, and ensure that the design is both beautiful and practical. 

In addition, the teaching of rendering and material mapping not only cultivates students' visual 
expression but also enables them to deeply understand how to use technical means to present the 
optimized spatial effects of layout, making the design more closely related to real-life scenes. The 
CAD application case shown in Figure 1 is a direct reflection of the results of this process, which 
clearly demonstrates how indoor layout optimization can be achieved with the assistance of CAD 
software, giving students confidence in how to use CAD for efficient design in future work. In short, 

incorporating the application of interior layout optimization models into CAD teaching not only 
enriches the course content and improves students' practical skills, but also stimulates their 

enthusiasm for exploring new design fields, laying a solid foundation for cultivating interior design 
talents with innovative thinking and practical abilities. 

4 INDOOR LAYOUT OPTIMIZATION MODEL 

4.1 Model Building 

DL, as a shining pearl in the field of machine learning (ML), is leading the innovation and leap of AI 
technology. In the complex and refined field of indoor layout optimization, the introduction of DL, 
especially CNN, provides strong technical support for designing intelligent and personalized indoor 
spaces. The indoor layout optimization model based on multi-task supervised learning proposed in 
this article not only integrates the latest developments in DL but also achieves efficient and accurate 

optimization of indoor spatial layout through innovative module design. 
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Figure 1: CAD application case. 

 
Figure 2 shows the network framework of the model proposed in this article. The core of this model 
lies in its carefully designed encoder-decoder architecture. Improving the encoder structure 
enhances the network's ability to capture complex features of indoor environments, effectively 
expands the receptive field of convolution operations, and enables the model to understand and 
parse the structural information of indoor spaces more comprehensively. 

 

 
 

Figure 2: Indoor layout optimization model based on multi-task supervised learning. 
 

Meanwhile, the introduction of a multi-task supervised learning module is a significant breakthrough 
over the traditional single-task learning model. This module refines the indoor layout optimization 
task into multiple sub-tasks for parallel processing, including preliminary segmentation of spatial 

layout, complete extraction of edge features, and semantic edge recognition of various spatial 
regions. This parallel processing mechanism not only improves the learning efficiency of the model 
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but also promotes the sharing and complementarity of information between different tasks, which 
helps the model to more comprehensively understand the semantic and geometric relationships of 
indoor space. The feature fusion post-processing module serves as the finishing touch of the model, 
cleverly fusing edge features with preliminary semantic segmentation results, and further improving 

the accuracy and detail of the segmentation map through local refinement processing. This step not 
only corrects possible segmentation errors but also enhances the segmentation map's ability to 
describe indoor spatial details, making the optimized indoor layout more in line with practical usage 
needs. 

Finally, the application of the joint loss function ensures that the model can optimize multiple 
tasks simultaneously during training, achieving overall performance optimization by balancing the 
loss contributions between different tasks. This training strategy not only improves the model's 

generalization ability but also enables the model to maintain stable performance when facing 

complex and changing indoor environments. In summary, the DL-based indoor layout optimization 
model proposed in this article achieves efficient and precise optimization of indoor spatial layouts 
through innovative module design and optimization strategies. This model not only brings intelligent 
solutions to the field of interior design but also provides new ideas and directions for the application 
of DL in complex scene understanding. 

4.2 Algorithm Principle 

Indoor layout can be regarded as a special case of constraint satisfaction problem, and the core lies 
in selecting the best solution from limited layout schemes. This is actually a combinatorial 
optimization problem aimed at selecting the optimal solution or solution set from a massive number 
of combinations under established constraints. To simplify the discussion, we abstract it as a general 

combinatorial optimization problem for analysis. 

         

min

. . 0

f x

s t g x

x D

                                        (1) 

Among them, x  are the configuration variable in indoor layout, f x  the objective function, g x  

the constraint equation, and D  the domain of the configuration variable. 

In CNN, the parameters of the convolutional kernel are automatically learned and determined 
through the training process, making its design more flexible and versatile compared to fixed 

convolutional kernels in traditional image processing. For single-channel images, we use a M N  

convolution kernel for convolution operation. This process involves systematically sliding the 
convolution kernel on the image, and performing a convolution calculation of element-wise 
multiplication and summation every time it slides to a new position. This series of operations 

ultimately generates an output single-channel image, and the formula for convolution calculation is 
defined as follows: 

    , , ,
1 1

M N

i j m n i m j n
m n

y w x                                 (2) 

Among them, ,i jy  represents the elements in the i  row and j  column of the output image, ,m nw  

represents the elements in the m  row and n  column of the convolution kernel, and ,i jx  represents 

the elements in the i  row and j  column of the input image. 

Given that natural light mainly enters indoor spaces through windows, the windows in a room can 
be likened to a unique set of LED light sources that only emit scattered noise power without 
generating direct signal power. It is worth noting that the intensity distribution of this granular noise 

is negatively correlated with the spacing between windows, that is, the larger the window spacing, 
the relatively lower the noise level. This phenomenon can be mathematically expressed as: 
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2

2
sh

wP
d

                                            (3) 

Among them, d  are the distance from the transmitting end to the receiving end, wP  the power of 

natural light noise, and sh  the variance of shot noise. 

The size perception energy term sE  of the entire indoor environment is the sum of the size 

perception energy (covering both width and length) of all objects in the room. By accumulating this 

energy term for each object, the size perception characteristics of the indoor environment are 
comprehensively reflected. 

     , ,i i

i

s l s w s
s

E E E
                                     (4) 

Among them, , ,,
i il s w sE E  refers to the size-aware energy terms of each object in the length and width 

directions. 

This article constructs three parallel task modules to analyze indoor environments: the complete 
edge task extracts the overall semantic boundary and outputs a deep feature map; Refine the single 
plane boundary in the local edge task and outputs a 5-depth feature map, with each dimension 
corresponding to a plane; The segmentation task generates a semantic segmentation map of the 
plane, outputs a 5-depth feature map, and predicts the probabilities of different categories of planes 

in each dimension. In the data processing flow, low
inputX  serves as the low-resolution output of the 

encoder's final upsampling layer and becomes the basis for subsequent operations. By carefully 

designing Conv2d (2D convolution operation), combined with specific convolution kernel size k , 

stride stride , and output depth o , feature extraction and transformation are achieved. The key 

upsampling step uses Upsampleby4 technology to achieve a 4x resolution improvement through 

bilinear interpolation, ensuring precise information recovery. In the end, high
segX , _

high
t edgeX , and _

high
a edgeX  

were used as high-resolution outputs for segmentation tasks, complete edge tasks, and local edge 
tasks, respectively, perfectly matching the original size of the input image and achieving 
comprehensive analysis from low resolution to high resolution. The entire calculation process is 

detailed in expressions (5) to (7), which f  represent convolution operation and I  upsampling 

operation, jointly weaving a technical framework for a profound understanding of indoor 

environments. 

         
1, 5

1 1
high stride o low
seg inputX I f X                                  (5) 

        
1, 1

_ 1 1
high stride o low
t edge inputX I f X                                  (6) 

         
1, 5

_ 1 1
high stride o low
a seg inputX I f X                                  (7) 

In this article, the construction of the loss function covers three key components: segmentation loss, 

smoothing loss, and edge loss. Specifically, segmentation loss, as the primary performance indicator 
of the model, quantifies the multi-class cross-entropy difference between the predicted results and 
the actual labels. Its precise definition is shown in formula (8). 

         

exp
log max log

exp

label
seg label

i
i

x
L soft x

x                          (8) 

labelx  is the actual value of the layout estimation label, and ix  is the predicted value of the model for 

the network nodes corresponding to each planar region category. 
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5 RESULT ANALYSIS AND DISCUSSION 

To verify the performance of the indoor layout optimization model based on multi-task supervised 
learning in this paper, a comparative experiment will be conducted with traditional ML-based 
optimization models. 

Figure 3 compares the processing time performance of the proposed model and the traditional 
model in indoor layout optimization tasks. From the figure, it can be clearly observed that compared 
to traditional models, the model constructed in this paper exhibits significant advantages in 
processing time. Specifically, traditional ML models often require a long time to analyze each design 
element one by one when dealing with complex indoor layout optimization tasks, and gradually 
approach the optimal solution through iterative calculations. In contrast, the model proposed in this 
article achieves parallel processing and collaborative optimization of indoor layout optimization tasks 

by introducing a multi-task supervised learning mechanism. This parallel processing method greatly 

improves the computational efficiency of the model, making the entire optimization process faster 
and more effective. 

 

 
 

Figure 3: Comparison of task processing time. 

 
Figure 4 compares the trend of loss function changes between the proposed model and the traditional 
model in indoor layout optimization tasks. It can be clearly seen from the figure that compared to 
traditional models, the loss function curve presented in this paper's model has a faster convergence 
speed, which significantly improves the efficiency and effectiveness of the optimization process. In 

traditional ML models, the convergence of the loss function often relies on complex iterative 
algorithms and extensive data training, which may encounter problems such as slow convergence 

speed and susceptibility to local optima. This not only prolongs the training time of the model but may 
also affect the accuracy of the final optimization results. The model presented in this article achieves 
parallel processing and collaborative optimization of multiple optimization tasks by introducing a 
multi-task supervised learning framework. During the training process, information sharing and 
complementarity between various task modules promote a rapid decrease in the loss function value, 
thereby achieving faster convergence speed. 

Figure 5 shows the difference in design precision between our model and traditional models in 

indoor layout optimization tasks. From the figure, it can be clearly seen that compared to traditional 
models, the model presented in this paper demonstrates significant advantages in design precision. 
Traditional ML models are often limited by the learning ability of a single task and the limitations of 
data representation when optimizing indoor layouts, making it difficult to fully capture the complex 

features of indoor environments, resulting in certain deviations in design results. 
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Figure 4: Comparison of loss functions. 
 

This article's model achieves multidimensional and deep-level analysis of indoor layout optimization 
problems by constructing a multi-task supervised learning framework. This multi-task parallel 

learning method not only improves the learning efficiency and generalization ability of the model but 
also significantly enhances the design precision, making the optimized indoor layout more in line with 
actual needs and design expectations. 

 

 
 

Figure 5: Comparison of design precision. 
 

Figure 6 compares the actual performance of the proposed model and the traditional model in indoor 
layout optimization tasks, with user satisfaction ratings as the core. From the feedback data in the 
figure, it can be clearly seen that compared to traditional models, our model has achieved higher 
evaluations in terms of user satisfaction. Although traditional models can optimize indoor layout to a 
certain extent, their single-task learning approach and limited optimization capabilities often make it 
difficult to meet the diverse needs and expectations of users, resulting in limited improvement in user 

satisfaction. By introducing a multi-task supervised learning mechanism, this model not only 
achieves comprehensive coverage and accurate processing of indoor layout optimization tasks but 
also fully considers subjective factors such as user habits and aesthetic preferences. During the 
optimization process, the model can automatically adjust design parameters to better match users' 

personalized needs, thereby improving their user experience and satisfaction. 
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Figure 6: Comparison of user satisfaction. 
 

Figure 7 reveals the difference in scene throughput between our model and traditional models in 
indoor layout optimization tasks. This model achieves parallel processing and collaborative 
optimization of multiple optimization tasks through multi-task supervised learning. This mechanism 
enables the model to efficiently handle multiple spatial areas in indoor layouts while maintaining high 
accuracy and stability. Therefore, in terms of scene throughput, the model presented in this article 

demonstrates higher efficiency and stronger processing capabilities, which can better meet the high 
efficiency and wide applicability requirements for indoor layout optimization in practical applications. 

 

 
 

Figure 7: Comparison of throughput in different scenarios. 
 

Figure 8 compares the CPU utilization of the proposed model and the traditional model during the 
execution of indoor layout optimization tasks. It can be clearly seen from the figure that compared to 
traditional models, the model presented in this paper shows a lower level of CPU utilization. 

Traditional models often require high CPU resources for indoor layout optimization due to increased 
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algorithm complexity and data processing, resulting in a decrease in overall system efficiency. The 
model in this article effectively reduces the dependence of a single task on CPU resources and 
achieves efficient resource utilization by optimizing algorithm design and introducing a multi-task 
parallel processing mechanism. 

 

 
 

Figure 8: CPU utilization comparison. 

 

 
 

Figure 9: Layout design of apartment. 

 

Figure 9 shows the comparison of a small apartment before and after the application of the proposed 
indoor layout optimization model. Before optimization, the spatial layout of the apartment is crowded 
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and the functional areas are not clearly defined. After the optimization of the model, the space has 
been used more reasonably, and the overall layout is more in line with the living habits of residents. 
 

 
 

Figure 10: Layout design of office space. 
 
Figure 10 is an example of layout optimization of an open office space. Before optimization, the 
arrangement of workstations in the office space was chaotic and the passages were narrow, which 

affected the work efficiency and comfort of employees. After applying the indoor layout optimization 
model, the workstations are rearranged, forming a more spacious passage and a more reasonable 

cooperation area, and ensuring that every employee has sufficient working space and good sight. 
Through these two design examples, we can clearly see the obvious advantages of the proposed 
indoor layout optimization model in practical application. It can not only help designers optimize the 
spatial layout more efficiently but also ensure that the optimized layout is more in line with the needs 
of users.  

6 CONCLUSIONS 

This article aims to explore the potential application of indoor layout optimization models, and 

innovatively propose a DL based indoor layout optimization model. Through a series of carefully 
designed experiments and comparative analysis, this model has demonstrated remarkable 

performance in multiple key indicators. Specifically, this model not only significantly improves design 
efficiency, but also enables designers to complete high-quality interior layout designs in a shorter 
amount of time; At the same time, it also optimizes spatial layout through intelligent algorithms, 
achieving maximum space utilization and meeting users' dual needs for functionality and aesthetics. 
In addition, the improvement in user satisfaction further validates the effectiveness of our model in 

enhancing user experience. 

However, it is worth noting that although the model in this article has made significant progress 
in multiple aspects, there are still certain limitations. Firstly, the training of DL models relies on a 
large amount of annotated data, and the diversity and complexity of indoor layout design make 
obtaining high-quality datasets a major challenge. Secondly, the model may exhibit certain 
limitations when dealing with extremely complex or special indoor layouts, requiring further 

algorithm optimization and adaptive adjustments. Finally, the application scenarios and 
generalization ability of the model still need to be further expanded and validated to ensure its 

effectiveness and stability in different fields and scenarios. 
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