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Abstract. The traditional independent and single "cloud rendering" platform is far 

from meeting the market demand, and the massive social computing power has not 
been effectively utilized. As the demand for efficient and responsive design processes 
increases, leveraging end-side computing can significantly enhance Human-
Computer Interaction (HCI) experiences by optimizing resource allocation and 
reducing latency. Based on multi-granularity and multi-level end-side computing 
power scheduling algorithms, this paper studies the end-side computing power 
network technology. Aiming at the complex and changeable application types and 

different personalized needs of the mobile Internet of Things, it proposes an efficient 
management method based on the graph theory model and deep learning method 
to slice the core and edge parts of the Internet of Things, which can meet the specific 
needs of different applications and improve the quality of service and user experience 

under the condition of limited resources. Through experimental research, the model 
proposed in this paper has specific effects. The findings indicate that a well-designed 

HCI network, supported by advanced CAD technologies, significantly improves end-
side computing systems' efficiency and user experience.  
 
Keywords: multi-granularity and multi-level CAD; end-side computing force; Human-
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1 INTRODUCTION 

In cloud edge aggregation computing, the increasing computing demand promotes the continuous 
expansion of the cloud data center scale. Effective load forecasting is crucial in realizing flexible 

resource allocation and can provide decision-making references for high-quality expansion schemes 
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of cloud data centers. Meanwhile, the load change of a cloud data center can reflect the running 
state of the current data center server cluster, and the resource utilization rate of a cloud data center 
in the current and future period is analyzed according to the actual running situation of its 
components [2]. 

By combining high-precision load forecasting models, cloud service providers can dynamically 

adjust cloud data centers' online server size, related hardware settings, resource configuration, etc., 
improving resource utilization, reducing energy consumption, and saving costs. As the primary user 
of cloud data center resources, the load of cloud data centers is driven by user behavior, including 
but not limited to computing-intensive, IO-intensive, and other types of computing tasks, which 
results in significant fluctuations in their load intensity. At the same time, the demand for related 
computing resources is also dynamically changing [12]. Due to the development of emerging 

technologies and differences in the structure and types of services provided by different cloud 

computing centers, load forecasting for cloud-based multiple data centers has become increasingly 
complex. Currently, most of the existing load forecasting methods focus on a single data center, 
using a single model method for prediction [9] or integrating the prediction results of various models 
based on specific rules [11] to select the optimal prediction model for different scenarios. The types 
of computing tasks running on server clusters are constantly changing, system resource usage is 
also fluctuating, and data centers have distinct differences. The mathematical methods for building 
load prediction models often need to be adjusted promptly to avoid loss of accuracy, resulting in 

these algorithms not being suitable for the current cloud-based multi-data center environment. This 
requires designing a universal method with strong applicability and high robustness for load 
forecasting in cloud data centers. 

Due to the inability to predict user computing needs, the system selects the optimal target server 
to process computing task requests in a dynamically changing resource environment. Suppose there 

is no reasonable task offloading mechanism. In that case, it will cause frequent network congestion, 

increase the number of failed tasks, extend task execution time, and decrease QoS quality. Currently, 
existing task-offloading methods often use optimization or multi-constrained joint optimization 
methods [15]. These algorithms utilize scheduling offloading decisions to minimize task offloading 
energy consumption or latency but ignore the collaborative work effect of multiple resources in edge 
environments. Traditional offline optimization methods only optimize system performance from a 
single perspective of latency or energy consumption and cannot adapt to the highly dynamic changes 
of edge environment resources. A practical task offloading strategy directly affects the processing 

ability of edge systems for user tasks, which helps to improve system performance and has significant 
research significance. The task offloading strategy should comprehensively consider various factors, 
such as the performance of the mobile device itself, the usage of edge servers and remote cloud 
servers, and the current network link quality to determine whether the computing tasks of the current 
terminal device need to be offloaded and to which specific server [16] 

The essence of load forecasting is to analyze historical data within a certain period in the past 
and calculate the load size at a particular moment or period in the future. Traditional time series 

prediction includes continuous and discrete predictions; load prediction belongs to continuous 
prediction, namely numerical prediction [6]. The order of numerical values can affect the results of 
load prediction. If the magnitude of the values remains unchanged, but the order of values changes, 
the predicted results may be completely different. 

Mathematical statistical model: A mathematical statistical model represented by the ARIMA 
model [20]. When it is necessary to predict the values of a load sequence node, the model usually 

needs to obtain the relevant values of each node in the period before that time. Because load 
sequences are usually non-stationary, analyzing and observing the trend of load prediction can obtain 
their long-term, seasonal, or periodic trends [18]. Due to the correlation between load size and the 
status of various components in the data center, the load prediction trend is challenging to observe 

directly. Through sequence decomposition methods commonly used in signal processing, such as the 
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Hale wavelet transform [17], the load sequence can be decomposed to observe the changing trend 
in different frequency bands, thus obtaining the correlation between input values and the final load. 
By manually adjusting parameters, the mathematical parameters required for the model can be set 
to analyze the future trend of load changes. In addition to the ARIMA model, mathematical and 
statistical models that can be used for load series prediction include naive prediction, exponential 

smoothing prediction, Holt-Winters prediction method, and weighted moving average method. 

Machine learning model: A machine learning model represented by SVR [13]. Support vector 
regression is a vital application branch of support vector machine models. In two-dimensional space, 
SVR fits data with acceptable errors defined in the model by finding a suitable curve. In 
multidimensional space, SVR regression constructs a regression plane to achieve the closest distance 
from all data in a set to that plane. These methods are usually data-driven. They use historical data 

to train the model, collect time characteristics and sample values, learn the relationship between 

attributes and values through supervised learning, and obtain the random dependency relationship 
between past and future loads. 

Deep learning model: As represented by reference [14], an RNN model is a neural network used 
to process data sequences. Traditional convolutional neural networks are considered unsuitable for 
time series prediction due to limitations in the size of convolutional kernels, which prevent them from 
obtaining the connection between the values before and after the sequence data. 

In studying load prediction algorithms using statistical learning methods, reference [8] used the 

ARIMA model to predict the load size in cloud computing environments. It analyzed the impact of 
workload changes on cloud application QoS. Reference [1] used a Kalman filter based on the 
maximum entropy criterion to predict and analyze the CPU state in virtual machines, thereby 
dynamically adjusting resource allocation. Reference [3] applies the Bayes method to load prediction 

to predict the average load over long time intervals. These methods carry out load forecasting based 
on preset formulas, which are simple and highly interpretable. However, their forecasting effect is 

limited by the setting of model parameters, and they need rich experience in parameter adjustment 
to artificially select specific parameter values. It reduces the computational workload, fails to consider 
the changing characteristics of load prediction modes, and does not conduct an in-depth analysis of 
the influencing factors of load changes, neglecting the possible connections between relevant 
resources within the system, resulting in low prediction accuracy. With the continuous development 
of neural network technology, more and more neural network methods are being applied to load 
forecasting research. Reference [5] introduced Artificial Neural Networks (ANN) technology to load 

forecasting problems, but the effectiveness of its prediction results significantly decreased in large 
cloud data centers. Reference [7] applied the Radial Basis Function (RBF) neural network to the 
energy consumption prediction problem in data centers, proving that the improved RBF model has 
better fitting and adaptability compared to the BP network in short-term energy consumption 

prediction problems. Based on the back-propagation neural network, literature [10] applied the Long 
Short Term Memory (LSTM) neural network to the load forecasting problem to mine the hidden 
relationship between the front and back of time series data. Although these neural network methods 

do not have advantages in the interpretability and response speed of the model, their models have 
more substantial expressive power and higher accuracy in handling complex load changes. However, 
it is still unsuitable for predicting complex states with frequent load fluctuations and interference 
from external uncertain factors. In the model fusion method, reference [4] proposed a data 
combination processing method GMDH and an integrated wavelet decomposer to reduce nonlinear 
errors at different time-frequency scales and predict the actual load size for each continuous future 

time interval. Reference [19] analyzed the effectiveness of several different load prediction models, 
including support vector machines, Holt-Winters, and genetic algorithms. It proposed an automatic 
decision model to select the optimal algorithm in various scenarios. 
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Combined with a multi-granularity and multi-level end-side computing force scheduling 
algorithm, this paper studies end-side computing force network technology proposes the algorithm 
model and applies it to improve end-side computing force network lifting. 

2 SLICING MODEL OF MOBILE INTERNET OF THINGS BASED ON MULTI-LAYER GRAPH THEORY 

2.1 Model Constraints and Basic Definitions 

Multi-layer graph theory is a complex scene in the research field of graph theory, which is defined 
as a node or an edge not only has one attribute but has multiple attributes and the edge and node 
with the same attribute are divided into the same layer, and various layers will be divided due to 
the increase of attributes. The analysis and research on multiple layers in a graph are defined as 

multi-layer graph theory. In the slice environment of the mobile Internet of Things, a node may 
deploy functional components of various slices, and a link may also belong to multiple slices. 

Therefore, a layer set 1 2 ., ..,, dL L L L Is defined, A multi-layer graph G with vertex set V, edge set 

E, and layer set L is defined as ∣∣ ∣∣
1 1  ({ } ,{ } ,  )L L

i i i iG V E L , where iV and iE E Represents corresponding 

vertex sets and edge sets belonging to different layers. Relevant parameters are defined as follows:

,  , total total total totalR C D T , where R is the overall available resources of the Internet of Things system, 

C represents computing resources, D represents storage resources, and T represents network 

transmission resources. 1 2 3{ , , ,..., | }total n iC c c c c c C  represents the available computing resources of 

the system, where   ic  is the available computing resources of a cloud computing node where virtual 

functions can be deployed. 1 2 3{ , , ,..., | }total n iD d d d d d D  represents the available storage resources of 

the system, where   id  is the available storage resources of a cloud computing node.

1 2 3{ , , , ..., | }total n iT t t t t t T  represents the available network transport resources of the system, 

where it  Is the available network transport resources between different cloud computing nodes 

connected? The transmission delay   A Particular link can be calculated according to the amount of 

data transmitted and the path's network bandwidth. The propagation delay   prop  is determined by the 

transmission time of the optical signal in the link, which can be calculated by dividing the link length 
by the speed of light. However, the switch's processing capacity determines the queuing and 
processing delays, so this paper will not consider them for now. In this paper, only transmission 

delay and propagation delay are considered. Therefore, there is a delay. i trans propl l l , That is, the 

total delay is the sum of the transmission delay and the propagation delay of the link. In the model, 

considering the bandwidth of transmission resources and the transmission path length ,P ,Bi i i it B  

represents link bandwidth and iP  represents link length. The system generates a new slice.   is  

according to the requirements. The slice is defined as i,R ,Gi i is A : iA  is the specific application, 

iG  is the applied resource, and iG  is the layer corresponding to the slice generated for the 

application after applying for the resource. iG  represents the total resources acquired by slices   is  

hosting an application   iA , described by a graph   iG .  
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All slices of the Internet of Things system are defined as 1 2 3{ , , ,..., | },n iS s s s s s S  where is Is a 

specific slice. According to the above slice definition, tuition with limited overall resources means 

1
,

n

i total
i
R R  and totalR is available resources for the whole system. 

The graph iG  will be automatically generated according to the business's specific needs under 

the restricted resources   iG Of the slice. Therefore, the attributes of node v and edge e in the graph

  iG  are defined as   , , , ,v v e ev C D e B P  where vC  and vD  represent the computational and storage 

resources allocated for node v in the slice   is , respectively, and Be and Pe represent the available 

bandwidth and link length of link e, respectively. 

All resources: Available resources   s  Will limit the iG  of a slice; that is to say, all nodes' computing 

and storage resources do not exceed the allocable computing and storage resources. The sum of 
bandwidths of all links in the slice does not exceed the total bandwidth of the slice; that is, there 
are: 

1
( , ) (C,D)

m

n i
n
v c d R                                                                                (1) 

1
( ) (B)

m

n i
n
e b R                                                                                         (2) 

Whether during slice initialization or slice running, when allocating resources for slices, there is 

always: 

1

itotaln

in
argmax min                                                                                       (3) 

Formula 3 represents that when allocating resources for all slices, as few resources as possible are 
allocated for each slice on the premise of meeting application requirements. 

If we assume that the amount of data to be transmitted and computed by an application is w, 
the sum of computational resources of each virtual function in the slice is C, and the total link 

resource is B, there is a delay 
w w

L a
C B

. Because the computational and transmission delays are 

not in the same order of magnitude, constants α and β are used to adjust. Therefore, increasing the 

computing and link resources is necessary to reduce the delay while the amount of transmitted data 
is constant. When all the resources of a particular slice are limited, the objective function of delay 
minimization is: 

1 1

1 1

s.t.
m m

n i n im mi n n

n n
n n

minL c R C b R B

max c max b

                                (4) 

 

2.2 Model and Algorithm Design 

To meet the complex and diverse business requirements in 5G and 5G Beyond the Internet of Things, 
different network functions may be deployed at the core position or run at the edge position, and all 
other functions will be connected through a suitable secure link to provide corresponding services 

for the services carried by different slices in the form of virtual function chain. This chapter uses 
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GraphTheory to describe an abstract mobile Internet of Things slices. It analyses the deployment, 

operation, and optimization of slices using multi-layer weighted graphs V,EiG .  

 
 

Figure 1: Network slicing based on a multi-layer weighted graph. 

In Figure 1, the graph   iG  is an abstract model of slice I, and different nodes and paths have 

corresponding characteristic attributes. In the slice represented by each layer, the performance of 

all nodes and links can be reflected. For example, the related performance of a node   iv  is expressed 

by its radius. The larger the node (radius), the more resources and the stronger the performance of 

the physical or virtual platform running the virtual function. On the contrary, the smaller the node, 

the weaker its processing capacity. The weight ijw  of each edge ,vij i je v  is expressed by the 

thickness of its line segment. The thicker the line segment of an edge, the more network resources, 
the larger the bandwidth, and the lower the delay used to transmit data between nodes. On the 
contrary, the thinner the edge, the smaller the bandwidth and the higher the delay. 

If we assume that the current node is   iv , The end node is ,j jV WV is the resource state weight of 

the end node and the path of connection iv and jV is ijR , and ijWR is the resource state weights of the 

current path, there are: 

 ij ij jW WRW V                                                                                           (5) 

The wandering probability of each path is: 

deg( )

1

i

ij
ij V

ij
j

W
P

W

                                                                                           (6) 

According to the random walk nature of the graph, there are: 

deg( )

1
1

iV

ij
j
P                                                                                                 (7) 

The mathematical description formula for generating a countermeasure network is as follows: 
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data x z Z
x®P z~PG D

minmaxV D,G = E logD x +E 1 - logD G z                   (8) 

From the point of view of discriminator D, D wants to distinguish actual samples from false samples 

as much as possible, so it wants D x  to be as large and D G z  to be as small as possible, that is, 

V (D, G) is as large as possible. From the generator's point of view, G wants to fool D as much as 

possible; that is, it wants D G z  to be as big as possible, that is, (D,V  G) to be as small as possible. 

The two models oppose each other and finally reach the global optimum. In resource prediction, 
through continuous iteration, generator D continuously generates more realistic data to predict the 

resource demand of slices. 

The specific mathematical description is as follows: 

p
t+1 tQ S ,A =Q S,A                                                                           (9) 

The transition between the state S at time t+1 and the new joint action set A' occurs after joint 

action A executes the resource allocation strategy π in the state S at time t. Chapter 5 details the 
specific algorithm and implementation process. 

To meet the demand for low delay in the mobile process of various terminals, the overall delay 
of the system is divided into two parts: transmission delay and data processing delay, which are 
expressed by the following formula: 

px txL L L                                                                                       (10) 

Because the processing and transmission delays are not of the same order of magnitude, the 
parameters alpha and beta are used for adjustment. 

If we assume that the total amount of data to be processed and transmitted in task T of the 

current slice S is T
tD , The current delay can be expressed as: 

T T
t t

t
px tx

D D
L

R R
                                                                                    (11) 

The formula represents the processing and transmission resources used to process and transmit 

data. Since all the data to be processed are equal and the goal is to obtain the minimum delay, the 
above formula can be changed as follows: 

t
px tx

minL
maxR maxR

                                                                    (12) 

In this paper, the graph neural network algorithm is used to infer the available resources of each 
node. The mathematical expression is as follows: 

1 1, ,k k k
v k u vf W CONCAT LSTM F u N v f               (13) 
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In the above form and subscript base, cap F of a node at the current moment and 1  kuF  is the state 

of all neighboring nodes at the previous moment. The LSTM algorithm obtains the state of itself and 
its adjacent nodes at the last moment through multi-layer iteration. The specific algorithm and 
implementation process are detailed in Chapter 6. 

2.3 Slicing Resource Management of Mobile Internet of Things Based on Deep Learning 

Figure 2 depicts the slice resource management architecture of the mobile Internet of Things based 
on deep learning, which is mainly composed of four layers: slice layer, control layer, management 
layer, and learning layer. The slice layer has two functional architecture modules: the data exchange 
and virtual function modules. The main task of the switch is to forward data traffic according to flow 

table entries. The SDN controller in the control layer controls the specific situation of the whole 
network through the OpenFlow protocol. In the virtual function component module, the virtual 
function modules of mobile Internet core, such as MMA, vSGW, vPGW, and vHSS, are run on the 

virtualization platform based on the LXC container. 

 
 

Figure 2: Slicing mobile Internet of Things architecture based on deep learning. 

We first introduce the application of generating a countermeasure network model in network 
resource demand prediction. 

1. Problem description: In the high-speed mobile Internet of Things environment, administrators 
must accurately predict resource demand to ensure the quality of the end-user experience. 

DeepSlicing uses network downlink rate, uplink rate, and network delay metrics for network load 
forecasting. DLt 、Ult, and Dt represent the corresponding t parameters at a particular time: empty, 

empty, { , , }Tt t t tX DL UL D represents corresponding network parameter metrics at time t. We use tY  

to redescribe a work metric case in which all slices in a time series (t=1,2,...,t  T) have a time slice of 

one minute, where T is the maximum time metric. Here, random basic data sets 1 2X= , ,..., TX X X X  

and slice network measurement situation history data sets 1 2Y= , ,..., TY Y Y Y  are used. The goal of 
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the model is to predict the network slice measurement for the next time slice 1TY . Because 24 

hours is 1440 minutes, this article sets the maximum time T to 1440. 

 
 

Figure 3: Resource demand prediction model based on generating countermeasure network. 

2. Prediction model: Figure 3 shows the prediction module for generating countermeasure network 

demand in the DeepSlicing model proposed in this paper. Because network traffic is based on time 
series, the LongShortTermMemory (LSTM) network is used as the prediction model in generator G. 

The traffic data cap Y that subdues the traffic data 1
ˆ
TY  of the next time slice is predicted and 

generated through input data X. 

1
ˆ
TY G X                                                                                            (14) 

LSTM is a deep learning model that can rely on learning for different time lengths. Moreover, LSTM 
performs well in many changeable problems, such as natural language text extraction, handwriting 
recognition, and power load forecasting. 

The discriminator D is realised by a convolution neural network model, which performs the 
convolution operation of multidimensional data (such as , ,DLt ULt Dt ). The input data of discriminator 

D in D, the deep slicing prediction module, is composed of accurate historical data 

1 2 1, , , , TY Y Y YT Y  or data , ,. ,ˆ .. ,n
T+11 2G Y =Y Y YT Y  generated by the generator. 

A convolution neural network is a feed-forward network with excellent image and video 
recognition, recommendation systems, and natural language processing performance. 

3. Model training: The generator and discriminator (G, D) are trained in two steps using the 
StochasticGradientDescent (SGD) algorithm. 

Training of generator G: ((X, Y) is sample data.) To "confuse" discriminator D as much as possible, 
generator G needs to continuously reduce the confrontation loss so that discriminator D cannot judge 

whether the data is accurate or generated. The system puts real data nY  classified into 1, classifies 

the generated data  Y  into 0, and d defines the countermeasure loss function of generator G as   GadvL

. 

,1G
adv sceL Y L D Y                                                                        (15) 

Among them, sceL is the SigmoidCross-Entropy loss function, which is defined as: 
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, 1 log(1 )se i i i i
i

L A B B sigmoid A B sigmoid A            (16) 

Only using the minimum confrontation loss function in the natural environment cannot satisfy 
prediction accuracy. Generator G may use the wrong samples to confuse discriminator D, and 
discriminator D will use the wrong countermeasure samples to learn continuously, which will cause 
the model's failure. Therefore, generator G needs to reduce error loss and use Lp loss: 

ˆ
n n

p pL Y,Y =Y-Y                                                                                                        (17) 

Among them, p=1 or p=2. 

We must define a directional prediction loss function because mobile traffic prediction is closely 

related to resource allocation and user experience quality.   dplL : 

n

dpl T+1 T T+1 TL Y,Y = sign Y -Y - sign Y -Y                                               (18) 

Among them, the sign is a symbolic function. 

Then, we combine the above three related loss functions of generator G with appropriate parameters 

adv , p , and dpl , and The final loss function is: 

 
n n

G
G adv adv p p dpl dplL X,Y = a L Y +a L Y,Y +a L Y,Y                                 (19) 

Training of discriminator D: ((X, Y) are different data samples). Because the role of D is to judge 

whether the input 3D data is real data
n

Y  or generated dataŶ , Its target loss function is the same 

as that of the generator. Therefore, while keeping the weight of generator G unchanged, we use 

one-step SGD to minimize the target loss function. ,X Y : 

n n
G

D adv sece seceL X,Y = L Y,Y = L D Y ,0 + L D Y ,1                           (20) 

4. Training data set: To simulate the real Internet of Things data, this paper's training data is 
downloaded from 4G data collected by the Department of Computer Science of Cork University in 

Ireland from two significant operators in Ireland. 

Figure 4 depicts the multi-agent, multi-level reward deep reinforcement learning model proposed 
by DeepSlicing for slice resource allocation of mobile Internet of Things. DeepSlicing's resource 
configuration module is implemented by DeepQ-learningNetwork (DQN). As shown in Figure 6, it is 

defined that.   tS  is the corresponding observation state of the algorithm until time t . At is the joint 

action set executed in the state?   tS  and   tR is is the multi-level reward set obtained by the agent after 

executing the joint action   tA  in the state   tS . 
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Figure 4: Deep reinforcement learning algorithm of multi-agent and multi-level reward. 

Meanwhile, we take DNN as the action state value function.   ,At tQ S . Optimal learning of the action 

state value function Q is realized according to the iteration in formula (21): 

1 , ,

 

, ,

k t t k t t k k

k t k k t tA

Q S A Q S A E

E R maxQ S A Q S A

                                                    (21) 

From the above formula, the method to realize the approximation of the action state value function 

is as follows: 

1 , ,k t t k t tQ S A Q S A                                                                                    (22) 

Then,   kE  Needs to tend to 0, that is: 

, , --0t k k t tA
R maxQ S A Q S A                                                             (23) 

For each iteration k, the parameter update can be achieved by minimizing the objective function 
shown in formula (23). 

| min( , , ) |t k k t tA
minE R maxQ S A Q S A                                      (24) 

Therefore, this paper takes minE in the above equation as the error function, uses the SGD algorithm 
to update the parameters in DNN, and obtains the optimal solution of the action state value function. 

3 END-SIDE COMPUTING FORCE NETWORK MODEL BASED ON MULTI-GRANULARITY AND 
MULTI-LEVEL END-SIDE COMPUTING FORCE SCHEDULING 

Suppose we want to determine the relationship between the computing power level and the macro 

digital economy's development. In that case, we need to build a systematic framework of computing 
power index from three dimensions: computing power environment, computing power scale, and 
computing power application, as shown in Figure 5, to make a comprehensive evaluation. 
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Figure 5: Computational power index framework. 

The functional architecture of the computing power network is divided into four modules: computing 
power network resource layer, computing power network control layer, computing power network 
service layer, and computing power network arrangement management layer, as shown in Figure 6. 
The service provider layer mainly realizes user-oriented services, and its atomic functional 
capabilities are open. The network control layer mainly realizes the routing of computing and network 

multidimensional resource integration through the network control plane. The computing power 
network resource layer primarily provides computing power resources, storage resources, and 

network forwarding resources. It combines them with the computing processing ability and network 
forwarding ability in the network to realize the transmission and flow of various computing and 
storage resources. The computing power management orchestration layer mainly solves the 
problems of registration, modeling, management, orchestration, and security of heterogeneous 
computing power resources and service/function resources. 

 
 

Figure 6: Overall functional architecture diagram of the computing power network. 

The centralized scheme architecture of multi-granularity and multi-level computing power networks 
comprises four parts (Figure 7). (1) Computing power network management arrangement system. 

The resource management and scheduling system of the computing power network flexibly 
schedules computing power resources according to business requirements, which can meet real-
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time business requirements and improve the utilization rate of computing power. (2) Empowering 
platform. It empowers user business deployment by providing an enabling platform for AI 
businesses. (3) Edge/core DC. The business deployment node includes computing power resource 
infrastructure and NFV infrastructure. (4) Network infrastructure. The network infrastructure 
connecting users, edge cloud, and core cloud consists of an SDN controller on the control plane, 

traditional network management, and network equipment on the forwarding plane. 

 
 

Figure 7: The centralized scheme architecture of multi-granularity and multi-level computing power 

network. 

There are two main aspects to testing the task scheduling simulation module: one is to test the new 
function points, and the other is to test the parallel task scheduling simulation process. The two tests 
can use the same set of functions, except that one is added manually, and the other is embedded 
in a slot function, which can automatically complete a series of configurations as long as it is 
triggered. The attributes of tasks appear in bold italics, and the remaining areas represent related 
attribute information, such as nodes contained by functions in the task collection. At present, the 

priority of a node is set to be the same as the first level of its task, and its priority can be modified 
according to different scheduling strategies in the later stage. The task set is verified in a 3-core and 
4-core environment. The simulation results are shown in Figure 8 and Figure 9. 

 
 

Figure 8: Schematic diagram of 3 core operations. 
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Figure 9: Schematic diagram of 4 core operations. 

The key technologies of end-side computing force network based on multi-granularity and multi-
level end-side computing force scheduling proposed in this paper are verified, and the algorithm 
model proposed in this paper is explored to evaluate the improvement effect of end-side computing 
force. Finally, the evaluation results shown in Table 1 are obtained. 

 
NO
. 

Computational power 
level 

NO
. 

Computational power 
level 

NO
. 

Computational power 
level 

1 83.0767  10 88.7048  19 84.4737  

2 87.3315  11 83.4999  20 84.4954  

3 87.8191  12 82.2114  21 86.6563  

4 90.6750  13 91.9596  22 89.5421  

5 85.0401  14 86.9620  23 90.9322  

6 88.3464  15 83.9031  24 87.8004  

7 90.1623  16 88.7748  25 88.7463  

8 86.8693  17 87.2608  26 91.7801  

9 85.8927  18 83.5348  27 87.8081  

 

Table 1: Evaluation of improvement effect of key end-side computing power network technologies 

based on multi-granularity and multi-level end-side computing power scheduling. 

From the above experimental research, the critical technology of end-side computing force network 
based on multi-granularity and multi-level end-side computing force scheduling can effectively 
improve the level of end-side computing force and promote the performance of end-side equipment. 

4 CONCLUSIONS 

With the rapid development of 5G, high speed and low latency are the main technical characteristics 
of the network. The increasing weight of wireless access promotes the growth of mobile edge 
computing, which enables the generation, processing, and application of services to be completed 
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locally instead of relying solely on remote centralized units. In future network applications, the 
impact of the access side will become more and more profound, the requirements of service 
application speed and latency will become higher and higher, and the role of mobile edge computing 
will become more prominent. Moreover, the computing power network architecture will take the 
deep integration of network and computing as the engine. This paper focuses on scalable and secure 

deployment of mobile Internet of Things slices according to the specific requirements of different 
services, predictable and efficient utilization of Internet of Things slice resources, further 
improvement of user experience, and optimization of high-performance edge slices during terminal 
mobility. In addition, an end-side computational force network model based on multi-granularity and 
multi-level end-to-end computational force scheduling is proposed. The experimental results show 
that the model proposed in this paper has specific effects. End-side computing force networks in the 
automobile sector require extensive research to optimize vehicle systems. This study intends to 

increase performance and reliability by emphasizing multi-granularity computing, multi-level 
scheduling, and efficient resource management. Integrating these technologies using optimization 
algorithms, communication protocols, and security measures promises to improve functionality and 
user safety and is ultimately successful. 
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