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Abstract. In this article, a motion control model of a submarine cable detection 
robot based on CAD (Computer-Aided Design) and RL (Reinforcement Learning) is 

constructed to verify its practical application effect and potential in motion control 
of a submarine cable detection robot. In the model construction process, the state 

space and action space are carefully designed to fully reflect the robot's motion 
state and possible operation choices. At the same time, a reward function that 
considers detection efficiency, safety, and energy consumption is defined to guide 
the robot in learning the optimal strategy. This article trained a robot model that 
can move efficiently and autonomously under various working conditions by 

constantly adjusting the algorithm parameters and optimizing the training strategy. 
The experimental results show that the submarine cable detection robot using CAD 
technology and RL has achieved remarkable results in terms of movement 
efficiency and detection accuracy. Especially in the complex marine environment, 
robots can respond to various challenges more flexibly. This research not only 
verifies the great potential of RL in the field of marine robots but also provides 

useful references and enlightenment for future research. 
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1 INTRODUCTION 

As an important infrastructure connecting submarine communication and power transmission, 
submarine cable plays an irreplaceable role in ensuring global communication networks' stability 
and energy supply safety. With the continuous development and utilization of marine resources, 
the laying scope of submarine cables is expanding day by day, and the complexity of its operating 
environment and the difficulty of maintenance are also increasing. Once the submarine cable fails, 
it will not only lead to communication interruption and power supply obstruction but also have a 
serious impact on the marine ecological environment. Therefore, it is particularly important to 

inspect and maintain submarine cables regularly, efficiently, and accurately [1]. Submarine cable 
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detection mainly relies on artificial diving inspection, sonar detection ROV (Remotely Operated 
Vehicle) and other methods. However, these methods have many limitations. As an important 
branch of machine learning, RL can master the optimal strategy by making agents try and learn 
constantly in the environment. This feature makes RL a wide application prospect in the field of 

robot control, especially in complex and dynamic environments. At the same time, CAD 
technology, as an important means of computer-aided design, can accurately and efficiently 
construct virtual prototypes, which provides strong support for robot design, optimization and 
simulation [2]. Combining RL with CAD technology is expected to achieve a breakthrough in the 
field of submarine cable detection robots and improve detection efficiency and accuracy. 
Submarine cable detection technology has experienced a development process from simple to 
complex, from low efficiency to high efficiency. At present, in addition to the traditional methods of 

artificial diving inspection, sonar detection and ROV, some new technologies have emerged. These 

new technologies have improved the efficiency and accuracy of submarine cable detection to some 
extent, but there are still many problems and challenges [3].  

On the basis of existing research, some scholars have introduced CAD (Computer Aided 
Design) technology and reinforcement learning algorithms for the virtual prototype construction 
and motion simulation of underwater cable outer wall detection robots. This dynamic simulation 

not only helps researchers evaluate the performance of robots under different underwater 
conditions but also promotes a deeper understanding of the potential impacts on underwater 
ecosystems. Combine climate change factors such as sea level rise and storm surges with the 
safety inspection of submarine cables. Effectively cope with the uncertainty of underwater terrain 
and the complexity of submarine cable layout. By simulating and analyzing the potential impacts of 
these extreme climate events on the location, stability, and detection difficulty of submarine 
cables, a scientific basis is provided for the long-term maintenance and emergency response of 

submarine infrastructure. Meanwhile, this also helps to reveal how climate change exacerbates the 

instability of the underwater environment, thereby increasing the demand for detection and 
maintenance of critical infrastructure such as submarine cables. Through the construction of 3D 
visualization models and animations, not only are the direct impacts of climate events such as sea 
level rise and coastal erosion on coastal areas demonstrated, but also the working scenarios of 
submarine cable inspection robots in complex underwater environments are further presented [4]. 
This visualization approach not only enhances public awareness of the importance of climate 

change and maintenance of underwater infrastructure but also provides design professionals with 
intuitive tools to evaluate and optimize the design of underwater detection robots [5]. This 
combination not only improves the accuracy and efficiency of robot design but also enables robots 
to autonomously optimize their detection paths and action strategies in complex and changing 
marine environments through reinforcement learning [6]. The underwater terrain model 
constructed using GIS data, combined with particle fluid simulation technology, can further 

simulate natural phenomena such as underwater water flow and sediment movement, providing a 

more realistic operating environment for underwater cable detection robots [7]. 

With the widespread application of robot technology in the industrial field, research has not 
only witnessed their significant contributions in ground industrial asset inspection, monitoring, and 
maintenance but also explored innovative applications of robot technology in underwater 
environments, especially in submarine cable inspection. The robot platform developed by it has 
been optimized specifically for underwater cable detection tasks while maintaining its high 

efficiency and flexibility [8]. Through CAD technology, a high-precision virtual prototype of a 
submarine cable inspection robot has been constructed, facilitating detailed structural optimization 
and performance evaluation during the design phase and providing a solid foundation for 
subsequent motion simulation. Based on sharing our experience in using semi-autonomous robot 
systems for complex industrial task automation, some scholars further explored the integration 
and application of this cutting-edge technology by combining the extended analysis of "virtual 
prototype construction and motion simulation of submarine cable outer wall detection robot-based 

on CAD and reinforcement learning." In the process of constructing virtual prototypes, the 
application of reinforcement learning algorithms greatly enhances the intelligence level of robots. 
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In this scenario, semi-autonomous robots not only need to accurately perform detection tasks, but 
also need to have the ability to autonomously navigate, avoid obstacles, and adapt to changing 
water flow conditions in complex underwater environments [9]. In addition to remote methane 
detection in oil fields and torch chimney detection in oil and gas production environments, the 

detection of the outer wall of submarine cables provides us with another excellent stage to 
showcase the advantages of semi-autonomous robot systems. By simulating various possible 
scenarios of submarine cable detection, reinforcement learning algorithms can train robots to learn 
optimal detection path planning, action strategy adjustment, and emergency response to 
unexpected situations, ensuring efficient and accurate task completion during actual deployment. 
These systems achieve comprehensive, real-time, and efficient detection of submarine cables by 
combining human-in-the-loop monitoring, precise execution of semi-autonomous robots, model-

based edge control, and remote support of cloud services [10]. 

The purpose of this study is to design a virtual prototype of a submarine cable outer wall 
detection robot based on CAD and RL and verify its performance through motion simulation. The 
specific research contents include the structural design of the submarine cable outer wall detection 
robot, the formulation of the RL control strategy, the construction of a virtual prototype, and 
motion simulation. The research method mainly adopts a combination of theoretical analysis and 

simulation experiments. Through this research, we expect to build an efficient and accurate virtual 
prototype of the submarine cable outer wall detection robot and provide strong support for its 
practical application. The main achievements include the design scheme of the virtual prototype of 
a submarine cable outer wall detection robot, RL control strategy, and motion simulation results. 

The innovation of this article is mainly reflected in the following aspects: 

Combination of reinforcement learning and motion control of submarine cable detection robot; 

In this article, reinforcement learning, an advanced machine learning technology, is applied to 

the motion control of a submarine cable detection robot, which realizes the autonomous and 
efficient motion of the robot in the complex marine environment. 

Fine design of state space and action space; 

When constructing the reinforcement learning model, this article carefully designed the state 
space and action space to comprehensively and accurately reflect the robot's motion state and 
possible operation choices. 

Definition of reward function considering multiple factors; 

The reward function defined in this article comprehensively considers many factors, such as 
detection efficiency, safety, and energy consumption, so as to guide the robot in learning the 
optimal motion strategy in complex environments. 

This article is divided into seven sections, and the contents of each section are summarized as 
follows: 

The first section is the introduction, which summarizes the research background, significance, 

current situation, and objectives. The second section expounds on the relevant theoretical basis. In 
the third section, the demand analysis and design are carried out for the submarine cable outer 
wall detection robot. The fourth section introduces the construction process of a virtual prototype 
based on CAD. The fifth section discusses the application of RL in the motion control of submarine 
cable detection robots. The sixth section is the motion simulation and performance assessment of 
the virtual prototype. The seventh section summarizes the research results and looks forward to 
the future research direction. 

2 RELATED THEORETICAL BASIS 

CAD is a technology that uses computer technology to design and draw products. 3D modelling is 
an important part of CAD technology, and its principle mainly includes geometric modelling and 

physical modelling. Geometric modelling focuses on the geometric properties of objects, such as 
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shape and size. Physical modelling focuses on the physical properties of the object, such as 
material and mass. In the process of 3D modelling, the common methods are solid modelling, 
surface modelling and wireframe modelling. Ma et al. [11] Create a three-dimensional model by 
defining the volume and boundary of an object through solid modelling. Surface modelling creates 

models by defining the surface of an object; Wire frame modelling defines only the outline of an 
object, not its volume and surface. RL is a machine learning algorithm whose main idea is to let 
the agent master the optimal strategy through trial and error and learning in the environment. At 
present, many excellent algorithms have emerged in the RL field, such as tabular Q learning, deep 
Q networks, policy gradient, and so on. Robot dynamics is a subject that studies the law of robot 
motion, including position analysis, velocity analysis, and acceleration analysis. Path planning is an 
important part of robot control; its main purpose is to plan an optimal path for the robot from the 

starting point to the endpoint. Motion control is to control the robot to move according to the 

predetermined trajectory according to the result of path planning. The commonly used motion 
control methods include PID control, fuzzy control, and neural network control. Nikulshin et al. 
[12] adopted these methods to adjust the control parameters according to the actual movement of 
the robot in real-time so as to ensure that the robot can move accurately and stably along the 
predetermined trajectory. 

To further improve inspection and maintenance efficiency in the field of Marine engineering 
while significantly reducing the risk and cost of human operation, autonomous underwater vehicles 
(AUVs) have become an important tool for the inspection and measurement of offshore wind 
farms, submarine cable systems, and other underwater infrastructure. In order to achieve long-
term high-precision detection in a confined space, Parol [13] believes that AUVs must have the 
ability to flexibly shuttle and fluctuate in complex physical environments to improve operational 
efficiency and adaptability. RoboFish's design not only integrates advanced technologies such as 

acoustic communication, computer vision, electronic control, and autonomous navigation but also 

pays special attention to the balance between energy efficiency and environmental adaptability. On 
this basis, the reinforcement learning algorithm is used to simulate and train the motion control of 
RoboFish so that it can learn the optimal detection path, obstacle avoidance strategy, and dynamic 
adjustment ability in the simulated submarine cable environment, laying the foundation for 
accurate operation in actual deployment. Given that these tasks often require high 
maneuverability, Sharma et al. [14] analyzed flexible operations similar to those demonstrated by 

remotely operated vehicles (ROVs), where AUVs' design and performance are constantly being 
pushed to new heights. Designed to provide superior thrust efficiency and unparalleled flexibility 
for autonomous navigation between complex underwater structures. In this context, Robofish, an 
innovative bionic fish-shaped AUV, has emerged that cleverly mimics the propulsion and 
maneuvering methods of fish in nature. Through CAD technology, researchers can accurately build 
three-dimensional models of RoboFish, from structural optimization design to component assembly 

simulation, all of which can be carried out in a virtual environment, greatly shortening the design 

cycle and reducing the cost of prototyping. 

As a leading force in underwater warfare, autonomous robotic fish are not only designed for 
target detection and tracking but also enhance the perception of the underwater environment, 
improve collision resistance, and focus on high-precision tasks such as detecting the outer walls of 
submarine cables. This model not only accurately depicted every detail of the robotic fish but also 
exported the STL file to the 3D printer MakerBot. The robot fish's excellent maneuverability is one 

of its core strengths, thanks to its innovative tail fin design. The swing of the tail fin is precisely 
controlled by a precision servo motor, which simulates the swimming behaviour of fish in nature 
and realizes an efficient and flexible propulsion mechanism. During the development process, we 
took full advantage of CAD(Computer Aided Design) and reinforcement learning to carefully build a 
virtual prototype of the robot fish through Solid Works® software. The precision manufacturing of 
polylactic acid thermoplastic polymer material is realized, which ensures the lightweight, durability 
and environmental adaptability of machine fish parts. To further improve its combat capability in 

the underwater environment, Yu et al. [15] integrated a combined system of vision and ultrasonic 
sensors. The experimental results show that under normal exposure conditions, the robotic fish 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 22(S7), 2025, 270-284 

© 2025 U-turn Press LLC, http://www.cad-journal.net 
 

274 

can accurately detect objects 90 centimetres away from itself, which is crucial for tasks such as 
detecting the outer walls of submarine cables. The system can track the location and distance of 
target objects in real time, accurately identify potential obstacles, and ensure that the robot fish 
can perform tasks safely and efficiently in complex underwater environments. By constructing a 

highly realistic underwater cable detection environment, a reinforcement learning algorithm is 
used to simulate the motion strategy, sensor data processing, and obstacle avoidance mechanism 
of the robot fish so that the robot fish can master efficient operation skills in the complex 
underwater environment before the actual deployment. This process not only improves the 
intelligence level of the robot fish but also significantly shortens the field debugging cycle and 
reduces research and development costs. 

3 DEMAND ANALYSIS OF SUBMARINE CABLE OUTER WALL DETECTION ROBOT 

3.1 Detection Tasks and Environmental Analysis 

The main goal of the outer wall inspection of submarine cables is to identify and locate defects 
such as cracks, wear and corrosion, and to evaluate the overall structural integrity of submarine 
cables. Therefore, the detection robot should have high-precision and high-resolution detection 

ability and real-time data transmission and processing function to adapt to the working 
environment of deep sea and complex terrain. 

The working environment of submarine cable outer wall detection robots has obvious 
particularity [14]. Robots should not only have strong structural strength and sealing performance 
to resist deep-sea pressure but also have good obstacle-crossing ability and stability to deal with 
underwater obstacles. In addition, it is very important to choose corrosion-resistant and anti-
ageing materials and protective measures to ensure that the robot can work autonomously for a 

long time in salt fog and corrosive marine environments and maintain its long-distance 
communication ability. 

3.2 Overall Design and Functional Module Division of Robot 

The structural design of submarine cable outer wall inspection robot should comprehensively 

consider its inspection task, working environment and sports performance [15]. Therefore, the 
robot adopts a modular design, so that it can be flexibly combined and adjusted according to 
actual needs. The whole structure is compact and light, which is convenient to carry and transport; 
At the same time, it has good hydrodynamic performance to reduce resistance and energy 
consumption in water. In key parts, such as the head and tail of the robot, a streamlined design is 
adopted to reduce the impact and interference of water flow on the robot. According to the 
requirements of the detection task, the robot can be equipped with various sensors such as a high-

definition camera, sonar and laser scanner to realize all-round and high-precision detection of the 

outer wall of submarine cable. The actuator is responsible for driving the robot to move and 
controlling the operation of the detection tool. The functional modules of the submarine cable 
outer wall detection robot are divided as follows: 

(1) Motion module 

The motion module is the key part of the submarine cable outer wall detection robot to realize 

autonomous movement and obstacle crossing. The motion module adopts propeller, crawler, wheel 
and other driving modes. At the same time, the motion module is also equipped with 
corresponding sensors and control systems to realize the functions of precise positioning, speed 
control and path planning of the robot. 

(2) Detection module 

The detection module is the core part of the submarine cable outer wall detection robot, which 
is responsible for realizing high-precision detection of the submarine cable outer wall. The 

detection module is equipped with high-resolution cameras, sonar and other sensors, as well as 
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corresponding data processing and analysis software. By collecting images, sounds and other 
information on the outer wall of submarine cables, and processing and analyzing them, the 
detection module can accurately identify the defects and damages on the surface of submarine 
cables. 

(3) Energy and communication module 

The energy and communication module is an important part of ensuring the long-term 
autonomous operation and remote communication of the submarine cable outer wall detection 
robot. The energy module can use various power supply modes such as battery and solar energy 
to ensure that the robot can work continuously and stably in the deep sea environment. The 
communication module is responsible for data transmission and communication between the robot 
and the control centre. By adopting advanced communication technologies, such as underwater 

wireless communication and satellite communication, it can be ensured that the robot can keep in 

real-time contact with the control centre in the deep sea environment. 

4 CONSTRUCTION OF VIRTUAL PROTOTYPE BASED ON CAD 

4.1 Geometric Modeling and Constraint Setting 

Geometric modelling is the basis of CAD modelling, and it is also the key step to constructing the 
virtual prototype of a submarine cable outer wall detection robot. In the process of geometric 
modeling, it is necessary to use drawing tools in CAD software are to draw accurately according to 
the actual size and shape of the robot. By defining various parts and components of the robot, 
such as the fuselage, boom, sensor, etc., a complete three-dimensional model of the robot can be 
constructed. In the construction of a virtual prototype of a submarine cable outer wall detection 
robot, the detailed design of key components is very important. The schematic diagram of the 

dual-probe model detecting submarine cable is shown in Figure 1. 
 

 
 

Figure 1: Schematic diagram of detecting submarine cable with double probe model. 
 

For the mechanical structure, we need to focus on the design of key components such as the 
motion mechanism, transmission mechanism and support mechanism of the robot. In this article, 
after the geometric modelling is completed, all parts and components are assembled to form a 

complete robot model, as shown in Figure 2. 
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Figure 2: Three-dimensional model of the robot. 
 

In the assembly process, according to the actual structure and motion relationship of the robot, 
this article sets reasonable constraints and connection methods, and now uses the following 
algorithm formula to describe this process: 

A. Assembly constraint formula of components: 

Let iC  represent the constraint set of component i , jP  represent the position and attitude of 

component i , and ijJ  represent the connection relationship between component i  and component 

j . Assembly constraints can be expressed as: 

   
0 If  and  satisfy the constraint of 

, ,
Error code If  and  do not satisfy the constraint of 

i j ij
i i j ij

i j ij

P P J
C P P J

P P J
              (1) 

B. Formula of motion relationship between components: 

Let iT  represent the motion transformation matrix of the component i , and ijR  represent the 

motion relationship of component i  relative to component j . The kinematic relationship can be 

expressed as: 

    
0 If  and  satisfy the relative motion constraint

,
Error code If  and  do not satisfy the relative motion constraint

i j
ij i j

i j

T T
R T T

T T
          (2) 

C. assembly optimization objective function: 

Let f d  be the objective function of assembly optimization and d  be the set of design 

variables, including the size and shape of components. Optimization objectives may include 
minimizing assembly errors and maximizing motion performance. The objective function can be 
expressed as: 

   ，
1 1 1

min 0 0
n n n

i ij
i i j

f d subject to C d R d                           (3) 

Where n  is the total number of parts? 

D. sports performance assessment function: 
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Let P p  be the assessment function of sports performance and p  be the parameters that 

affect performance, such as speed, acceleration and accuracy. The assessment function can be 
expressed as: 

    1 speed 2 acceleration 3 precisionP p P p P p P p                       (4) 

Where 1 2 3, , ,  is the weight of each performance index? 

E. stability and reliability assessment function: 

Let manufacturing costC m  be the assessment function of stability and reliability, and m  be the 

related parameters, such as fatigue life and maximum load of components. The assessment 
function can be expressed as: 

   manufacturing cost 1 material 2 process 3 assembleC m C m C m C m                 (5) 

By defining the relative position and motion relationship between components, the actual motion 
of the robot is simulated. At the same time, in the process of drawing, this article pays attention to 
maintaining the accuracy and consistency of the model, so as to provide a reliable basis for 
subsequent analysis and simulation. 

4.2 Integration and Verification of Virtual Prototype 

In the process of virtual prototype construction, assembly verification is an essential step. Through 
assembly verification, it can be checked whether the fit and motion relationship between various 
parts and components is correct. At the same time, possible problems and defects in the assembly 
process can be found, corrected, and improved in time. Details of assembly verification are shown 
in Table 1. 

 

Verificati
on Step 

Verification 
Content 

Check 
the 

Result of 
Fit/Motio

n 
Relations

hip 

Issues/De
fects 
Found 

Correctio
ns/Impr
ovement
s Made 

Verification Status 

Initial 
Assembl

y Check 

Fit 
between 

Componen
t A and 

Componen

t B 

Correct None - Passed 

Fit 

between 
Componen

t C and 
Assembly 

D 

Incorrect Excessive 

fit 
clearance 

Adjust 

dimensio
ns of 

Compon
ent C 

Passed after 

correction and re-
verification 

Motion 

Relation
ship 

Verificati
on 

Rotational 

motion of 
Assembly 

E 

Correct None - Passed 

Sliding 
motion 

between 

Incorrect Excessive 
sliding 

resistance 

Apply 
lubricati

on and 

Passed after 
correction and re-

verification 
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Componen
t F and 

Componen

t G 

adjust 
sliding 

surfaces 

Compre
hensive 
Assembl

y 

Verificati
on 

Overall fit 
of all 

component
s and 

assemblies 

Correct None - Passed 

Simulation 
of the 
overall 

motion of 
the virtual 

prototype 

Incorrect Partial 
motion 

interferen

ce 

Adjust 
positions 

and 

motion 
trajectori

es of 
relevant 
compone

nts 

Passed after 
multiple 

corrections and 

re-verifications 

Final 

Assembl
y 

Confirm
ation 

Confirmati

on of the 
effects of 

all 
corrections 

and 
improveme

nts 

Correct None - Fully passed, 

confirmed correct 

 
Table 1: Detailed table of assembly verification during virtual prototype construction. 

 

Through the above assembly verification, the correctness and integrity of the virtual prototype can 
be ensured, which provides a reliable basis for subsequent analysis and simulation. 

After the virtual prototype integration is completed, the preliminary motion simulation test is 
needed to verify the robot's motion performance and stability. In the simulation process, key 
indicators such as the robot's trajectory, speed, and acceleration must be considered, analyzed, 
and evaluated. The robot's trajectory is shown in Figure 3. 

From the motion trajectory diagram, it can be observed that the robot's position changes on 

the X-axis and the Y-axis are gradually increasing, indicating that the robot is constantly moving 

forward and climbing. The smoothness of the trajectory shows that the robot does not appear to 
jitter violently or deviate from the predetermined path during movement. The speed-time curve of 
the robot is shown in Figure 4. 

It can be seen from the speed-time curve that the increase and maintenance of the robot's 
speed in different periods conform to the preset motion law, and there is no sudden change or 

abnormal fluctuation of the speed. The speed of the robot gradually increased to 2 m/s in the later 
stage, indicating that its motion control system can control the speed change well. The 
acceleration-time curve of the robot is shown in Figure 5. 

It can be seen from the acceleration-time curve that at 0 seconds, the acceleration of the 
robot is 0.5 m/s (starting acceleration); At 2 seconds, the acceleration decreases to 0 (reaching a 
stable speed); This shows that the robot can quickly reach the preset speed. In the stable speed 
stage, the acceleration value is close to 0, which indicates that the robot can keep the stability and 

safety of the movement. 
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Figure 3: Trajectory diagram of robot. 
 

 
 

Figure 4: Speed-time curve of robot. 
 

 
 

Figure 5: Acceleration-time curve of the robot. 
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5 MOTION CONTROL OF SUBMARINE CABLE DETECTION ROBOT 

5.1 RL Model Construction 

In the RL model construction of a submarine cable detection robot, the design of state space and 
action space is the cornerstone. The state space should cover all the key information needed for 

robot movement. Let S  be the state space, which contains all the key information needed for 

robot movement. The state s  can be expressed as a vector: 

        
cable, , , ,

T

news x x o                                     (6) 

Where x  represents the current position of the robot;  represents the speed of the robot;  

represents the direction of the robot; cablex  represents the relative position of submarine cables; 

newo  and represents the distribution of obstacles in the surrounding environment. 

The action space defines all possible actions that the robot can take, such as forward, 
backward, steering, acceleration, deceleration, etc. These actions will be determined by the RL 

algorithm based on the current state. Let A  be the action space, which contains all possible 

actions that the robot can take. Action a  can be a discrete or continuous value, depending on the 

complexity of the problem: 

      forward, backward, left, right, accelerate, slow downa A                    (7) 

If the motion is continuous, a  can be a vector containing speed change and steering angle: 

         
change,

T

turna                                         (8) 

The reward function is the core component of RL, which guides the robot's learning direction. In 

the application of a submarine cable detection robot, the reward function should comprehensively 

consider many factors such as detection efficiency, safety and energy consumption. Let , , 'R s a s  

be the reward function, where s  is the current state, a  is the action taken, and 's  is the next 

state after the action is executed. The reward function can be defined as: 

       examine safe energy consumption, , ' ', ', ',R s a s R s a R s a R s a                    (9) 

Among them examine ',R s a  is a reward related to detection efficiency; safe ',R s a  is a reward related 

to safety; energy consumption ',R s a  is a reward related to energy consumption. 

Through the design of such state space, action space and reward function, a reinforcement 
learning model can be constructed, so that the robot can learn how to complete the submarine 

cable detection task efficiently and safely. 

5.2 Training Strategy and Optimization 

The choice of the RL algorithm directly affects the training effect and efficiency. According to the 
characteristics of a submarine cable detection robot, this article chooses a strategic gradient 
algorithm to optimize the parameters in detail, including learning rate, discount factor, balance 

parameters of exploration and utilization, etc., in order to find the optimal training configuration. 
The training data comes from the robot's attempts and feedback in the simulation or real 
environment. Through a large number of iterations, the state, action and reward sequence are 
collected to update the parameters of the RL model. Parameter tuning results are shown in Table 
2. 

 

Parameter Tuning range Optimal value 
Learning Rate 0.0001 ~ 0.1 0.01 

Discount Factor 0.5 ~ 1.0 0.95 
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Exploration-Exploitation 
Balance 

0.0 ~ 1.0 0.3 

Iterations 1000 ~ 100000 50000 

Batch Size 16 ~ 256 64 

 
Table 2: Parameter optimization of strategic gradient algorithm for submarine cable detection robot. 

 

6 MOTION SIMULATION AND PERFORMANCE ASSESSMENT OF VIRTUAL PROTOTYPE 

In order to verify the motion performance of a virtual prototype under different working conditions, 
this section designs a series of simulation experiments under typical working conditions. This 

includes motion simulation under different water depths, current velocities, submarine cable 

shapes (such as straight lines, bends, crosses, etc.) and obstacle distribution. According to the 
simulation data, the efficiency and stability of the robot can be evaluated. The movement 
efficiency can be measured by comparing the detection speed and energy consumption of the 
robot under different working conditions. Stability can be evaluated by observing the resilience of 
the robot when it encounters disturbance and the smoothness of the motion trajectory. The 
experimental results of the performance simulation are shown in Table 3. 

 

Experiment 
No. 

Water 
Depth 
(m) 

Wate
r 

Curr
ent 

Spee
d 

(m/s
) 

Submarin
e Cable 

Configura
tion 

Obstacle 
Distribution 

Detection 
Speed (m/s) 

Energy 
Consum

ption 
(kWh) 

Reco
very 
Time 
(s) 

Smoothn
ess of 
Motion 

Trajector
y 

(Score/1
0) 

1 10 0.5 Straight None 1.2 0.8 2.0 9.0 

2 20 1.0 Curved Few 1.0 1.2 2.5 8.5 

3 30 1.5 Crossed Moderate 0.8 1.6 3.0 7.5 

4 10 1.0 Straight Moderate 1.1 1.0 2.2 8.8 

5 20 0.5 Curved None 1.3 0.7 1.8 9.2 

6 30 1.0 Crossed Few 0.9 1.4 2.8 8.0 

7 10 1.5 Straight Numerous 0.7 1.8 3.5 7.0 

8 20 1.0 Curved Numerous 1.0 1.3 3.0 7.8 

9 30 0.5 Crossed Few 1.1 0.9 2.0 8.5 

 
Table 3: Simulation experiment results of virtual prototype's motion performance under different 
conditions. 
 
Note: The resilience index indicates the time required for the robot to recover to a stable state 
after encountering disturbance. The score range of motion trajectory smoothness is 0-10, and the 

higher the score, the smoother the motion trajectory. 

As can be seen from the table, the movement efficiency of the robot is higher under conditions 
such as shallow water depth, slow water flow speed, simple submarine cable shape, and few 
obstacles. In the case of shallow water depth, slow water flow, and few obstacles, the stability of 
the robot is better. However, in a complex environment (such as deep water, fast water flow, 
complex submarine cables, and many obstacles), the stability of the robot may be challenged, but 

it can still meet the basic needs. 

In addition to the motion performance, it is needed to analyze the accuracy of the detection 
results of the robot. This includes assessing the robot's recognition rate, positioning accuracy, false 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 22(S7), 2025, 270-284 

© 2025 U-turn Press LLC, http://www.cad-journal.net 
 

282 

alarm rate and false alarm rate to verify the effectiveness and reliability of the detection algorithm. 
The results are shown in Figures 6 and 7. 

 

 
 

Figure 6: Recognition rate and positioning accuracy test. 

 
Recognition rate: In nine different working conditions, the recognition rate of the robot reached 
95%, 92%, 88%, 93%, 96%, 90%, 87%, 91% and 94% respectively. 

Positioning accuracy: The corresponding positioning accuracy is ±0.05m, 0.1m, ±0.15m, 
±0.08m, ±0.04m, ±0.12m, ±0.18m, 0.1m and ±0.06m respectively. 

It can be seen from the data that the recognition rate of the robot is high in most working 
conditions, exceeding 90%. In terms of positioning accuracy, the performance of the robot is 

different under different working conditions. Under simple working conditions, the positioning 
accuracy is high, and the error is within ±0.1m. However, under complex working conditions, the 
positioning accuracy has declined. This is because the complex environment interferes with the 
positioning system of the robot. 

 

 
 

Figure 7: Results of false positive rate and false negative rate. 
 

False alarm rate: In nine different working conditions, the false alarm rate of the robot is 2.1%, 
3.1%, 5.4%, 2.5%, 1.9%, 4.2%, 6.1%, 3.5% and 2.8% respectively. 
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Missed report rate: The corresponding missed report rates are 3.4%, 4.2%, 6.3%, 3.5%, 
2.2%, 5.8%, 7.6%, 4.5% and 3.1% respectively. 

It can be concluded that the accuracy of the detection results of the robot is different under 
different working conditions. Under simple working conditions, the robot has a high recognition 

rate, accurate positioning accuracy, and a low false alarm rate and false alarm rate. Under 
complex working conditions, the accuracy of robot detection results is challenged. This is because 
these working conditions put forward higher requirements for the sensor, detection algorithm and 
positioning system of the robot. 

In order to further improve the accuracy of the robot's detection results, this article considers 
the following measures: (1) Optimize the detection algorithm to improve its adaptability to 
complex working conditions. (2) Improve the sensor and positioning system of the robot to 

improve its accuracy and stability. (3) Increase training data, especially for complex working 

conditions, to improve the generalization ability of the robot. 

7 CONCLUSIONS 

The purpose of this article is to explore the application of RL in the motion control of submarine 
cable detection robots. By constructing an accurate simulation environment and RL model, the 
robot can move efficiently and autonomously in a complex marine environment. The research 

content covers the construction of the RL model, the optimization of the training strategy and the 
verification of motion control in a simulation environment. The experimental results show that the 
proposed method can significantly improve the robot's motion efficiency and detection accuracy, 
and verify the great potential of RL in the field of marine robots. 

The innovation of this article is to combine RL with the motion control of a submarine cable 

detection robot and realize the adaptive control of the robot under various working conditions 
through fine reward function design and training strategy optimization. This contribution not only 

provides a new idea for the intelligent development of marine robots but also provides strong 
technical support for marine engineering applications such as submarine cable detection. 
Subsequent research will focus on narrowing the gap between simulation and reality and 
improving the generalization ability and robustness of the RL model. Potential applications include 
marine resources exploration, underwater structure detection and marine environmental 
monitoring. 
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